• ホームページ バックエンド開発 Python チュートリアル 研究Python的ORM框架中的SQLAlchemy库的映射关系

    研究Python的ORM框架中的SQLAlchemy库的映射关系

    Jun 10, 2016 pm 03:14 PM
    python

    前面介绍了关于用户账户的User表,但是现实生活中随着问题的复杂化数据库存储的数据不可能这么简单,让我们设想有另外一张表,这张表和User有联系,也能够被映射和查询,那么这张表可以存储关联某一账户的任意数量的电子邮件地址。这种联系在数据库理论中是典型的1-N (一对多)关系,用户表某一用户对应N条电子邮件记录。

    之前我们的用户表称为users,现在我们再建立一张被称为addresses的表用于存储电子邮件地址,通过Declarative系统,我们可以直接用映射类Address来定义这张表:

    >>> from sqlalchemy import ForeignKey
    >>> from sqlalchemy.orm import relationship, backref
     
    >>> class Address(Base):
    ...   __tablename__ = 'addresses'
    ...   id = Column(Integer, primary_key=True)
    ...   email_address = Column(String, nullable=False)
    ...   user_id = Column(Integer, ForeignKey('users.id'))
    ...
    ...   user = relationship("User", backref=backref('addresses', order_by=id))
    ...
    ...   def __init__(self, email_address):
    ...     self.email_address = email_address
    ...
    ...   def __repr__(self):
    ...     return "〈Address('%s')〉" % self.email_address
    
    
    ログイン後にコピー

    让我们注意一下新出现的东东,首先就是user_id的ForeignKey结构,学过数据库的同学都知道ForeignKey意味着外键,这是关系型数据库的核心理论之一,即该列user_id与其外键引用的列users.id存在引用约束(constrained)关系,在数据库层面上来讲,就是表users的user_id列被表users的id列约束,值得注意的是,外键关联的必定是另外一张表的主键。

    其次新出现的就是relationship()函数,这个将会告知ORM通过Address.userAddress类自身必须链接到User类。relationship()使用两个表的外键约束来判定这种链接的性质,比如说判定Address.user将会是多对一(many-to-one)关系。

    另外在relationship()内还有另外一个函数称为backref(),它将提供一种用于反向查询的细节,比如说在对象User上的Address对象集是通过User.addresses属性引用,那么多对一的关系(many-to-one)反向总会是一对多关系(one-to-many)。还有对于Address.user和User.addresses的关系来说总是双向的。

    假设使用了Declarative系统,那么relationship()的关系到远端类(remote class)的参数能够被指定为字符串。一旦所有的映射都被成功加载,那么这些字符串将会被计算出Python的表达式,再产生实际的参数(上文中User类的情况)。这些可以使用的字符串名字必须通过定义的基类创建好然后才被计算为实际的类参数,说白了,你字符串引用的类必须是ORM映射管理的类,然后这些类被映射完毕后,这些字符串才能被真正翻译为相应类的引用。

    接下来我们举个例子同样创建用User取代Address的”addresses/user”双向关系:

    class User(Base):
      # ....
      addresses = relationship("Address", order_by="Address.id", backref="user")
    
    
    ログイン後にコピー

    好吧,刚才多是直接翻译的官方文档,比较生硬,接下来我们来了解几个关于外键(Foreign Key)的小知识:

    1. FOREIGN KEY 约束是大多数(但不是所有)的关系型数据库中可以链接到主键列,或者拥有UNIQUE约束的列。

    2. FOREIGN KEY 能够引用多重列主键,并且其自身拥有多重列,被称为“复合外键”(composite foreign key)。其也能够引用这些列的子集(subset)。(注:这地方不太明白)

    3. FOREIGN KEY 列作为对于其引用的列或者行的变化的响应能够自动更新其自身,比如CASCADE引用操作,这些都是内置于关系型数据库的功能之一。

    4. FOREIGN KEY 能够引用其自身的表,这个就涉及到“自引用”(self-referential)的外键了。

    5. 更多关于外键的资料可以参考Foreign Key – Wikipedia。

    最后我们需要在数据库中创建addresses表,所以我们需要通过元数据(metadata)执行我们的CREATE语句,当然会跳过我们已经创建的表(比如users):

    >>> Base.metadata.create_all(engine) 
    PRAGMA table_info("users")
    ()
    PRAGMA table_info("addresses")
    ()
    CREATE TABLE addresses (
      id INTEGER NOT NULL,
      email_address VARCHAR NOT NULL,
      user_id INTEGER,
      PRIMARY KEY (id),
       FOREIGN KEY(user_id) REFERENCES users (id)
    )
    ()
    COMMIT
    
    
    ログイン後にコピー

    到这里我们的ORM关系算是建立完成了,接下来开始新的一部分,就是如何查询关联的对象。

    现在如果我们创建一个User,一个空的addresses集合将会被创建,在这里默认情况下addresses集合将会是列表类型。

    >>> jack = User('jack', 'Jack Bean', 'gjffdd')
    >>> jack.addresses
    []
    
    
    ログイン後にコピー

    接下来我们可以自由的添加Address对象到我们的User对象里了,在这里我们直接赋予addresses属性一个完整的列表。

    >>> jack.addresses = [
    ...         Address(email_address='jack@google.com'),
    ...         Address(email_address='j25@yahoo.com')]
    
    
    ログイン後にコピー

    当我们使用双向关系时,有一点需要注意的是:在任意一端添加的元素将会自动在另外一端可见,属性的获取和改变将不通过任何SQL语句和Python对象使用一样:

    >>> jack.addresses[1]
    <Address('j25@yahoo.com')>
     
    >>> jack.addresses[1].user
    <User('jack','Jack Bean', 'gjffdd')>
    
    
    ログイン後にコピー

    让我们添加并提交Jack Bean到数据库中,现在jack对象的addresses集合拥有了两个Address成员,它们将立即被加入会话中:

    >>> session.add(jack)
    >>> session.commit()
    INSERT INTO users (name, fullname, password) VALUES (&#63;, &#63;, &#63;)
    ('jack', 'Jack Bean', 'gjffdd')
    INSERT INTO addresses (email_address, user_id) VALUES (&#63;, &#63;)
    ('jack@google.com', 5)
    INSERT INTO addresses (email_address, user_id) VALUES (&#63;, &#63;)
    ('j25@yahoo.com', 5)
    COMMIT
    
    
    ログイン後にコピー

    我们来查询关于Jack的信息,但是奇怪的是没有任何关于addresses的SQL语句执行:

    >>> jack = session.query(User).\
    ... filter_by(name='jack').one() 
    BEGIN (implicit)
    SELECT users.id AS users_id,
        users.name AS users_name,
        users.fullname AS users_fullname,
        users.password AS users_password
    FROM users
    WHERE users.name = &#63;
    ('jack',)
    >>> jack
    <User('jack','Jack Bean', 'gjffdd')>
    
    
    ログイン後にコピー

    让我们直接来查询addresses集合吧,这里大家看到有关addresses的SQL语句执行了:

    >>> jack.addresses 
    SELECT addresses.id AS addresses_id,
        addresses.email_address AS
        addresses_email_address,
        addresses.user_id AS addresses_user_id
    FROM addresses
    WHERE &#63; = addresses.user_id ORDER BY addresses.id
    (5,)
    [<Address('jack@google.com')>, <Address('j25@yahoo.com')>]
    
    
    ログイン後にコピー

    由上可知,当我们访问addresses集合的时候,相关SQL语句才被执行,这也是延迟加载关系(惰性加载关系, lazy loading relationship)的例子,至此addresses集合方被作为普通列表加载了。

    このウェブサイトの声明
    この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

    ホットAIツール

    Undresser.AI Undress

    Undresser.AI Undress

    リアルなヌード写真を作成する AI 搭載アプリ

    AI Clothes Remover

    AI Clothes Remover

    写真から衣服を削除するオンライン AI ツール。

    Undress AI Tool

    Undress AI Tool

    脱衣画像を無料で

    Clothoff.io

    Clothoff.io

    AI衣類リムーバー

    Video Face Swap

    Video Face Swap

    完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

    ホットツール

    メモ帳++7.3.1

    メモ帳++7.3.1

    使いやすく無料のコードエディター

    SublimeText3 中国語版

    SublimeText3 中国語版

    中国語版、とても使いやすい

    ゼンドスタジオ 13.0.1

    ゼンドスタジオ 13.0.1

    強力な PHP 統合開発環境

    ドリームウィーバー CS6

    ドリームウィーバー CS6

    ビジュアル Web 開発ツール

    SublimeText3 Mac版

    SublimeText3 Mac版

    神レベルのコード編集ソフト(SublimeText3)

    PHPおよびPython:さまざまなパラダイムが説明されています PHPおよびPython:さまざまなパラダイムが説明されています Apr 18, 2025 am 12:26 AM

    PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

    PHPとPythonの選択:ガイド PHPとPythonの選択:ガイド Apr 18, 2025 am 12:24 AM

    PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

    Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

    VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

    VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

    VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

    Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

    VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

    ターミナルVSCODEでプログラムを実行する方法 ターミナルVSCODEでプログラムを実行する方法 Apr 15, 2025 pm 06:42 PM

    VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

    Python vs. JavaScript:学習曲線と使いやすさ Python vs. JavaScript:学習曲線と使いやすさ Apr 16, 2025 am 12:12 AM

    Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

    vscodeはMacに使用できますか vscodeはMacに使用できますか Apr 15, 2025 pm 07:36 PM

    VSコードはMacで利用できます。強力な拡張機能、GIT統合、ターミナル、デバッガーがあり、豊富なセットアップオプションも提供しています。ただし、特に大規模なプロジェクトまたは非常に専門的な開発の場合、コードと機能的な制限がある場合があります。

    See all articles