在Python的Flask框架下使用sqlalchemy库的简单教程
flask中的sqlalchemy 相比于sqlalchemy封装的更加彻底一些 , 在一些方法上更简单
首先import类库:
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy</span>
然后,需要加载 数据库路径
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">mysqlname='<span style="color: rgb(230, 219, 116); font-family: 'Source Code Pro'; font-size: 13pt; background-color: rgb(39, 40, 34);">mysql://user:passwd@127.0.0.1/student?charset=utf8</span>'</span>
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = mysqlname db = SQLAlchemy(app)</span>
通过前面两步 ,我们已经让flask和数据库联系到了一起
下面我们要把 flask和具体的表联系在一起、
这样建立一个model模型
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">class User(db.Model): """存储 每种报警类型的数量 , 以 分钟 为单位进行统计 :param source: string ,报警来源 :param network_logic_area: string ,该报警所属的逻辑网络区域 :param start_time: datetime , 报警发生时间 """ __tablename__ = 'hello' id = db.Column(db.Integer , primary_key = True) source = db.Column(db.String(255) ) network_logic_area = db.Column(db.String(255) ) start_time = db.Column(db.DateTime) count = db.Column(db.Integer) def __init__(self , source , network_logic_area , start_time , count): self.source = source self.network_logic_area = network_logic_area self.start_time = start_time self.count = count def alter(self): self.count += 1;</span>
上面这个代码,就让falsk和具体的表hello联系在了一起
在这个类中 ,我们首先要指定表,然后把这个表中的列都列出来,最后定义一个 初始化函数 , 让后面插入数据使用
现在开始具体的数据库操作:
1、insert
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;"> p = User(........) db.session.add(p) db.session.commit()</span>
通过 类User构造了一条数据
2、find
用主键获取数据:
Code example:
User.query.get(1) <User u'admin'>
通过一个精确参数进行反查:
Code example:
peter = User.query.filter_by(username='peter').first() #注意:精确查询函数query.filter_by(),是通过传递参数进行查询;其他增强型查询函数是query.filter(),通过传递表达式进行查询。 print(peter.id) #如果数据不存在则返回None
模糊查询:
Code example:
User.query.filter(User.email.endswith('@example.com')).all() [<User u'admin'>, <User u'guest'>]
逻辑非1:
Code example:
peter = User.query.filter(User.username != 'peter').first() print(peter.id)
逻辑非2:
Code example:
from sqlalchemy import not_ peter = User.query.filter(not_(User.username=='peter')).first() print(peter.id)
逻辑与:
Code example:
from sqlalchemy import and_ peter = User.query.filter(and_(User.username=='peter', User.email.endswith('@example.com'))).first() print(peter.id)
逻辑或:
Code example:
from sqlalchemy import or_ peter = User.query.filter(or_(User.username != 'peter', User.email.endswith('@example.com'))).first() print(peter.id)
filter_by:这个里面只能放具体放入条件,不能放一个复杂的计算 ,
filter: 这个里面可以放一些复杂的计算
.first:取第一条数据
.all:取出所有数据
还有一个其他的方法,可以进行排序、计数之类的操作
3、使用sql语句
可以通过 前面构造的 db 直接使用sql的原生语句
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">insert_table.db.engine.execute(' ..... ')</span>
4、delete
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">me = User(........)</span>
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">db.session.delete(me) db.session.commit()</span>
5、更新数据
Code example: u = User.query.first() u.username = 'guest' #更新数据和变量赋值那么简单,但必须是通过查询返回的对象。 db.session.commit()

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコードは、Microsoftが開発した無料のオープンソースクロスプラットフォームコードエディターと開発環境であるフルネームVisual Studioコードです。幅広いプログラミング言語をサポートし、構文の強調表示、コード自動完了、コードスニペット、および開発効率を向上させるスマートプロンプトを提供します。リッチな拡張エコシステムを通じて、ユーザーは、デバッガー、コードフォーマットツール、GIT統合など、特定のニーズや言語に拡張機能を追加できます。 VSコードには、コードのバグをすばやく見つけて解決するのに役立つ直感的なデバッガーも含まれています。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。
