用Python解析XML的几种常见方法的介绍
一、简介
XML(eXtensible Markup Language)指可扩展标记语言,被设计用来传输和存储数据,已经日趋成为当前许多新生技术的核心,在不同的领域都有着不同的应用。它是web发展到一定阶段的必然产物,既具有SGML的核心特征,又有着HTML的简单特性,还具有明确和结构良好等许多新的特性。
python解析XML常见的有三种方法:一是xml.dom.*模块,它是W3C DOM API的实现,若需要处理DOM API则该模块很适合,注意xml.dom包里面有许多模块,须区分它们间的不同;二是xml.sax.*模块,它是SAX API的实现,这个模块牺牲了便捷性来换取速度和内存占用,SAX是一个基于事件的API,这就意味着它可以“在空中”处理庞大数量的的文档,不用完全加载进内存;三是xml.etree.ElementTree模块(简称 ET),它提供了轻量级的Python式的API,相对于DOM来说ET 快了很多,而且有很多令人愉悦的API可以使用,相对于SAX来说ET的ET.iterparse也提供了 “在空中” 的处理方式,没有必要加载整个文档到内存,ET的性能的平均值和SAX差不多,但是API的效率更高一点而且使用起来很方便。
二、详解
解析的xml文件(country.xml):
在CODE上查看代码片派生到我的代码片
<?xml version="1.0"?> <data> <country name="Singapore"> <rank>4</rank> <year>2011</year> <gdppc>59900</gdppc> <neighbor name="Malaysia" direction="N"/> </country> <country name="Panama"> <rank>68</rank> <year>2011</year> <gdppc>13600</gdppc> <neighbor name="Costa Rica" direction="W"/> <neighbor name="Colombia" direction="E"/> </country> </data>
1、xml.etree.ElementTree
ElementTree生来就是为了处理XML,它在Python标准库中有两种实现:一种是纯Python实现的,如xml.etree.ElementTree,另一种是速度快一点的xml.etree.cElementTree。注意:尽量使用C语言实现的那种,因为它速度更快,而且消耗的内存更少。
在CODE上查看代码片派生到我的代码片
try: import xml.etree.cElementTree as ET except ImportError: import xml.etree.ElementTree as ET
这是一个让Python不同的库使用相同API的一个比较常用的办法,而从Python 3.3开始ElementTree模块会自动寻找可用的C库来加快速度,所以只需要import xml.etree.ElementTree就可以了。
在CODE上查看代码片派生到我的代码片
#!/usr/bin/evn python #coding:utf-8 try: import xml.etree.cElementTree as ET except ImportError: import xml.etree.ElementTree as ET import sys try: tree = ET.parse("country.xml") #打开xml文档 #root = ET.fromstring(country_string) #从字符串传递xml root = tree.getroot() #获得root节点 except Exception, e: print "Error:cannot parse file:country.xml." sys.exit(1) print root.tag, "---", root.attrib for child in root: print child.tag, "---", child.attrib print "*"*10 print root[0][1].text #通过下标访问 print root[0].tag, root[0].text print "*"*10 for country in root.findall('country'): #找到root节点下的所有country节点 rank = country.find('rank').text #子节点下节点rank的值 name = country.get('name') #子节点下属性name的值 print name, rank #修改xml文件 for country in root.findall('country'): rank = int(country.find('rank').text) if rank > 50: root.remove(country) tree.write('output.xml')
运行结果:
参考:https://docs.python.org/2/library/xml.etree.elementtree.html
2、xml.dom.*
文件对象模型(Document Object Model,简称DOM),是W3C组织推荐的处理可扩展置标语言的标准编程接口。一个 DOM 的解析器在解析一个XML文档时,一次性读取整个文档,把文档中所有元素保存在内存中的一个树结构里,之后你可以利用DOM 提供的不同的函数来读取或修改文档的内容和结构,也可以把修改过的内容写入xml文件。python中用xml.dom.minidom来解析xml文件,例子如下:
在CODE上查看代码片派生到我的代码片
#!/usr/bin/python #coding=utf-8 from xml.dom.minidom import parse import xml.dom.minidom # 使用minidom解析器打开XML文档 DOMTree = xml.dom.minidom.parse("country.xml") Data = DOMTree.documentElement if Data.hasAttribute("name"): print "name element : %s" % Data.getAttribute("name") # 在集合中获取所有国家 Countrys = Data.getElementsByTagName("country") # 打印每个国家的详细信息 for Country in Countrys: print "*****Country*****" if Country.hasAttribute("name"): print "name: %s" % Country.getAttribute("name") rank = Country.getElementsByTagName('rank')[0] print "rank: %s" % rank.childNodes[0].data year = Country.getElementsByTagName('year')[0] print "year: %s" % year.childNodes[0].data gdppc = Country.getElementsByTagName('gdppc')[0] print "gdppc: %s" % gdppc.childNodes[0].data for neighbor in Country.getElementsByTagName("neighbor"): print neighbor.tagName, ":", neighbor.getAttribute("name"), neighbor.getAttribute("direction")
运行结果:
参考:https://docs.python.org/2/library/xml.dom.html
3、xml.sax.*
SAX是一种基于事件驱动的API,利用SAX解析XML牵涉到两个部分:解析器和事件处理器。其中解析器负责读取XML文档,并向事件处理器发送事件,如元素开始跟元素结束事件;而事件处理器则负责对事件作出相应,对传递的XML数据进行处理。python中使用sax方式处理xml要先引入xml.sax中的parse函数,还有xml.sax.handler中的ContentHandler。常使用在如下的情况下:一、对大型文件进行处理;二、只需要文件的部分内容,或者只需从文件中得到特定信息;三、想建立自己的对象模型的时候。
ContentHandler类方法介绍
(1)characters(content)方法
调用时机:
从行开始,遇到标签之前,存在字符,content的值为这些字符串。
从一个标签,遇到下一个标签之前, 存在字符,content的值为这些字符串。
从一个标签,遇到行结束符之前,存在字符,content的值为这些字符串。
标签可以是开始标签,也可以是结束标签。
(2)startDocument()方法
文档启动的时候调用。
(3)endDocument()方法
解析器到达文档结尾时调用。
(4)startElement(name, attrs)方法
遇到XML开始标签时调用,name是标签的名字,attrs是标签的属性值字典。
(5)endElement(name)方法
遇到XML结束标签时调用。
在CODE上查看代码片派生到我的代码片
#coding=utf-8 #!/usr/bin/python import xml.sax class CountryHandler(xml.sax.ContentHandler): def __init__(self): self.CurrentData = "" self.rank = "" self.year = "" self.gdppc = "" self.neighborname = "" self.neighbordirection = "" # 元素开始事件处理 def startElement(self, tag, attributes): self.CurrentData = tag if tag == "country": print "*****Country*****" name = attributes["name"] print "name:", name elif tag == "neighbor": name = attributes["name"] direction = attributes["direction"] print name, "->", direction # 元素结束事件处理 def endElement(self, tag): if self.CurrentData == "rank": print "rank:", self.rank elif self.CurrentData == "year": print "year:", self.year elif self.CurrentData == "gdppc": print "gdppc:", self.gdppc self.CurrentData = "" # 内容事件处理 def characters(self, content): if self.CurrentData == "rank": self.rank = content elif self.CurrentData == "year": self.year = content elif self.CurrentData == "gdppc": self.gdppc = content if __name__ == "__main__": # 创建一个 XMLReader parser = xml.sax.make_parser() # turn off namepsaces parser.setFeature(xml.sax.handler.feature_namespaces, 0) # 重写 ContextHandler Handler = CountryHandler() parser.setContentHandler(Handler) parser.parse("country.xml")
运行结果:
4、libxml2和lxml解析xml
libxml2是使用C语言开发的xml解析器,是一个基于MIT License的免费开源软件,多种编程语言都有基于它的实现,python中的libxml2模块有点小不足的是:xpathEval()接口不支持类似模板的用法,但不影响使用,因libxml2采用C语言开发的,因此在使用API接口的方式上难免会有点不适应。
在CODE上查看代码片派生到我的代码片
#!/usr/bin/python #coding=utf-8 import libxml2 doc = libxml2.parseFile("country.xml") for book in doc.xpathEval('//country'): if book.content != "": print "----------------------" print book.content for node in doc.xpathEval("//country/neighbor[@name = 'Colombia']"): print node.name, (node.properties.name, node.properties.content) doc.freeDoc()
lxml是以libxml2为基础采用python语言开发的,从使用层面上说比lxml更适合python开发者,且xpath()接口支持类似模板的用法。
在CODE上查看代码片派生到我的代码片
#!/usr/bin/python #coding=utf-8 import lxml.etree doc = lxml.etree.parse("country.xml") for node in doc.xpath("//country/neighbor[@name = $name]", name = "Colombia"): print node.tag, node.items() for node in doc.xpath("//country[@name = $name]", name = "Singapore"): print node.tag, node.items()
三、总结
(1)Python中XML解析可用的类库或模块有xml、libxml2 、lxml 、xpath等,需要深入了解的还需参考相应的文档。
(2)每一种解析方式都有自己的优点和缺点,选择前可以综合各个方面的性能考虑。
(3)若有不足,请留言,在此先感谢!

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

CentOSシステムでのPytorchモデルの効率的なトレーニングには手順が必要であり、この記事では詳細なガイドが提供されます。 1。環境の準備:Pythonおよび依存関係のインストール:Centosシステムは通常Pythonをプリインストールしますが、バージョンは古い場合があります。 YumまたはDNFを使用してPython 3をインストールし、PIP:sudoyumupdatepython3(またはsudodnfupdatepython3)、pip3install-upgradepipをアップグレードすることをお勧めします。 cuda and cudnn(GPU加速):nvidiagpuを使用する場合は、cudatoolをインストールする必要があります

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

CentOSでPytorchバージョンを選択する場合、次の重要な要素を考慮する必要があります。1。CUDAバージョンの互換性GPUサポート:NVIDIA GPUを使用してGPU加速度を活用したい場合は、対応するCUDAバージョンをサポートするPytorchを選択する必要があります。 NVIDIA-SMIコマンドを実行することでサポートされているCUDAバージョンを表示できます。 CPUバージョン:GPUをお持ちでない場合、またはGPUを使用したくない場合は、PytorchのCPUバージョンを選択できます。 2。PythonバージョンPytorch

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所
