php实现4种排序算法
php实现4种排序算法
文章来自“PHP100中文网”
前提:分别用冒泡排序法,快速排序法,选择排序法,插入排序法将下面数组中的值按照从小到大的顺序进行排序。
$arr(1,43,54,62,21,66,32,78,36,76,39);
1. 冒泡排序
思路分析:在要排序的一组数中,对当前还未排好的序列,从前往后对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即,每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
代码实现:
$arr=array(1,43,54,62,21,66,32,78,36,76,39);
function bubbleSort($arr)
{
$len=count($arr);
//该层循环控制 需要冒泡的轮数
for($i=1;$i
{ //该层循环用来控制每轮 冒出一个数 需要比较的次数
for($k=0;$k
{
if($arr[$k]>$arr[$k+1])
{
$tmp=$arr[$k+1];
$arr[$k+1]=$arr[$k];
$arr[$k]=$tmp;
}
}
}
return $arr;
}
2. 选择排序
思路分析:在要排序的一组数中,选出最小的一个数与第一个位置的数交换。然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
代码实现:
function selectSort($arr) {
//双重循环完成,外层控制轮数,内层控制比较次数
$len=count($arr);
for($i=0; $i
//先假设最小的值的位置
$p = $i;
for($j=$i+1; $j
//$arr[$p] 是当前已知的最小值
if($arr[$p] > $arr[$j]) {
//比较,发现更小的,记录下最小值的位置;并且在下次比较时采用已知的最小值进行比较。
$p = $j;
}
}
//已经确定了当前的最小值的位置,保存到$p中。如果发现最小值的位置与当前假设的位置$i不同,则位置互换即可。
if($p != $i) {
$tmp = $arr[$p];
$arr[$p] = $arr[$i];
$arr[$i] = $tmp;
}
}
//返回最终结果
return $arr;
}
3.插入排序
思路分析:在要排序的一组数中,假设前面的数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
代码实现:
function insertSort($arr) {
$len=count($arr);
for($i=1, $i
$tmp = $arr[$i];
//内层循环控制,比较并插入
for($j=$i-1;$j>=0;$j--) {
if($tmp
//发现插入的元素要小,交换位置,将后边的元素与前面的元素互换
$arr[$j+1] = $arr[$j];
$arr[$j] = $tmp;
} else {
//如果碰到不需要移动的元素,由于是已经排序好是数组,则前面的就不需要再次比较了。
break;
}
}
}
return $arr;
}
4.快速排序
思路分析:选择一个基准元素,通常选择第一个元素或者最后一个元素。通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素。此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
代码实现:
function quickSort($arr) {
//先判断是否需要继续进行
$length = count($arr);
if($length
return $arr;
}
//选择第一个元素作为基准
$base_num = $arr[0];
//遍历除了标尺外的所有元素,按照大小关系放入两个数组内
//初始化两个数组
$left_array = array(); //小于基准的
$right_array = array(); //大于基准的
for($i=1; $i
if($base_num > $arr[$i]) {
//放入左边数组
$left_array[] = $arr[$i];
} else {
//放入右边
$right_array[] = $arr[$i];
}
}
//再分别对左边和右边的数组进行相同的排序处理方式递归调用这个函数
$left_array = quick_sort($left_array);
$right_array = quick_sort($right_array);
//合并
return array_merge($left_array, array($base_num), $right_array);
}

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











上記および筆者の個人的な理解: 現在、自動運転システム全体において、認識モジュールが重要な役割を果たしている。道路を走行する自動運転車は、認識モジュールを通じてのみ正確な認識結果を得ることができる。下流の規制および制御モジュール自動運転システムでは、タイムリーかつ正確な判断と行動決定が行われます。現在、自動運転機能を備えた自動車には通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなどのさまざまなデータ情報センサーが搭載されており、さまざまなモダリティで情報を収集して正確な認識タスクを実現しています。純粋な視覚に基づく BEV 認識アルゴリズムは、ハードウェア コストが低く導入が容易であるため、業界で好まれており、その出力結果はさまざまな下流タスクに簡単に適用できます。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

C++sort 関数の最下層はマージ ソートを使用し、その複雑さは O(nlogn) で、クイック ソート、ヒープ ソート、安定したソートなど、さまざまなソート アルゴリズムの選択肢を提供します。

人工知能 (AI) と法執行機関の融合により、犯罪の予防と検出の新たな可能性が開かれます。人工知能の予測機能は、犯罪行為を予測するためにCrimeGPT (犯罪予測技術) などのシステムで広く使用されています。この記事では、犯罪予測における人工知能の可能性、その現在の応用、人工知能が直面する課題、およびこの技術の倫理的影響について考察します。人工知能と犯罪予測: 基本 CrimeGPT は、機械学習アルゴリズムを使用して大規模なデータセットを分析し、犯罪がいつどこで発生する可能性があるかを予測できるパターンを特定します。これらのデータセットには、過去の犯罪統計、人口統計情報、経済指標、気象パターンなどが含まれます。人間のアナリストが見逃す可能性のある傾向を特定することで、人工知能は法執行機関に力を与えることができます

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

1. マルチモーダル大型モデルの発展の歴史 上の写真は、1956 年に米国のダートマス大学で開催された最初の人工知能ワークショップです。このカンファレンスが人工知能開発の始まりとも考えられています。記号論理学の先駆者たち(前列中央の神経生物学者ピーター・ミルナーを除く)。しかし、この記号論理理論は長い間実現できず、1980 年代と 1990 年代に最初の AI の冬の到来さえもたらしました。最近の大規模な言語モデルが実装されて初めて、ニューラル ネットワークが実際にこの論理的思考を担っていることがわかりました。神経生物学者ピーター ミルナーの研究は、その後の人工ニューラル ネットワークの開発に影響を与えました。彼が参加に招待されたのはこのためです。このプロジェクトでは。

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58

上記と著者の個人的な理解は、自動運転システムにおいて、認識タスクは自動運転システム全体の重要な要素であるということです。認識タスクの主な目的は、自動運転車が道路を走行する車両、路側の歩行者、運転中に遭遇する障害物、道路上の交通標識などの周囲の環境要素を理解して認識できるようにすることで、それによって下流のシステムを支援できるようにすることです。モジュール 正しく合理的な決定と行動を行います。自動運転機能を備えた車両には、通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなど、さまざまな種類の情報収集センサーが装備されており、自動運転車が正確に認識し、認識できるようにします。周囲の環境要素を理解することで、自動運転車が自動運転中に正しい判断を下せるようになります。頭
