浅析PHP中cookie与session技术
浅析PHP中cookie与session技术
1.cookie是什么?
cookie指某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密)。
通俗来理解就是,你去一个专卖店或者超市买东西,然后店里给你办一张会员卡,以后你的身份和购买信息都存在这个卡里,而这个卡放你身上。之后每次去买东西的时候只需要刷卡就可以了,不用再登记或者记录其他的信息。
然后将这段话映射了web上,超市结账台就是服务器端,而你自己就是客户端,你身上所带的卡也就是存在客户端中的cookie文件,里面记录了你的帐号密码等信息。
不过要注意的一点,cookie在第二次使用的时候才能够生效,也就是说你在超市第一次买东西,人家会给你办卡,你以后来买就可以刷卡了,但是第一次买之前,超市并没有你的任何信息,所以你第一次根本就没有卡。网站也一样,第一次登录某网站,当然要输入帐号密码等信息,然后才能生成cookie存在本地,以便下一次使用。
同时,cookie也有自己的有效期,过了期以后就失效了,本地的cookie文件会被自动删除。需要再次登录,输入帐号密码,然后生成新的cookie。这样做的主要目的还是为了安全考虑。
2.cookie机制图解。
3.cookie使用方法。
(1)设置cookie
bool setcookie ( string $name,$value,$expire,$path,$domain,$secure,$httponly
setcookie("username","user",0,"/"); setcookie("username","user",time()+60*60,"/");
每个参数的用法就不作说明了。这里重点解析一下上面两中设置cookie方式中的时间和路径。
第一个当中的时间放了个0进去,难道代表生存时间为0.明显不可能,它有着特殊的意义,表示cookie的有效期随着浏览器的关闭而结束。他们的路径中都放了个"/"。这个就代表在这个域名下的所有contentpath都可以访问cookie,也就是说这个网站下的所有页面都可以追踪这个cookie。
(2)删除cookie
setcookie("username","",time()-3600,"/");
(3)查看cookie
print_r($_COOKIE);
----------------------------------------------------------------------------------
-----------------------------我是分割线-------------------------------------------
----------------------------------------------------------------------------------
1.session是什么?
Session是指一个终端用户与交互系统进行通信的时间间隔,通常指从注册进入系统到注销退出系统之间所经过的时间。
session的工作原理(摘于百度) (1)当一个session第一次被启用时,一个唯一的标识被存储于本地的cookie中。 (2)首先使用session_start()函数,PHP从session仓库中加载已经存储的session变量。 (3)当执行PHP脚本时,通过使用session_register()函数注册session变量。 (4)当PHP脚本执行结束时,未被销毁的session变量会被自动保存在本地一定路径下的session库中,这个路径可以通过php.ini文件中的session.save_path指定,下次浏览网页时可以加载使用。
其实通俗来讲的话,就是你去超市买东西,办的会员卡记录了你的信息,但是会员卡并不是保存在你这里,而是已数据的方式存在超市的系统中,一旦注册之后可以直接使用。你需要的时候,直接可以使用。但是你一旦离开超市,那个会员卡也就失去了效用直到你的下一次购买。同时,这个会员卡的唯一标识也就是你自己,其他任何人都没有办法使用你的会员卡。直接对号入座就很好理解了。
session和cookie的一大不同点就是,session注册之后直接使用,也就是第一次购买就可以使用,而cookie是经过第一次购买之后才将信息存入会员卡,然后第二次开始使用。
2.session机制图解。
3.session使用方法。
(1)设置session
session_start();
$_SESSION['username']="user";
每一次在使用session之前都需要进行开启session,就当是通常进门都先需要开门一样。而在设置session时和对变量进行赋值没有多大的区别,其实$_SESSION本身就是一个变量。
(2)删除session
这个相对步骤就多了点,而不是cookie里面一句话搞定。
//开启session session_start(); //注销session session_unset(); //销毁session session_destroy(); //同时销毁本地cookie中的sessionid setcookie(session_name(),"",time()-3600,"/");
print_r($_SESSION);
1.cookie与session优缺点。
cookie本身是存放在客户端中,仅占用几kb的内存大小。每次登录网站的时候都会带上本地的cookie进行验证,省去了麻烦的重复输入。但是安全性不是很高,毕竟是存放在本地的文件,虽然都是进行加密了的,一旦电脑数据被盗取,cookie就很有可能会被获取。
session存放在服务器中,占中内存虽小,但是用户基数够大的情况下,会对服务器造成很大的负荷。但是,数据放在服务器上,总归风险降低了许多。虽说没有不透风的墙,不过风也是可以很小很小的,这比喻。。。有同学可能疑问,session使用时,会有sessionid存在本地,一旦获取能否登录。答案当然是否定的,因为每次的id都是不一样的。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









StableDiffusion3 の論文がついに登場しました!このモデルは2週間前にリリースされ、Soraと同じDiT(DiffusionTransformer)アーキテクチャを採用しており、リリースされると大きな話題を呼びました。前バージョンと比較して、StableDiffusion3で生成される画像の品質が大幅に向上し、マルチテーマプロンプトに対応したほか、テキスト書き込み効果も向上し、文字化けが発生しなくなりました。 StabilityAI は、StableDiffusion3 はパラメータ サイズが 800M から 8B までの一連のモデルであると指摘しました。このパラメーター範囲は、モデルを多くのポータブル デバイス上で直接実行できることを意味し、AI の使用を大幅に削減します。

最初のパイロットおよび重要な記事では、主に自動運転技術で一般的に使用されるいくつかの座標系と、それらの間の相関と変換を完了し、最終的に統合環境モデルを構築する方法を紹介します。ここでの焦点は、車両からカメラの剛体への変換 (外部パラメータ)、カメラから画像への変換 (内部パラメータ)、および画像からピクセル単位への変換を理解することです。 3D から 2D への変換には、対応する歪み、変換などが発生します。要点:車両座標系とカメラ本体座標系を平面座標系とピクセル座標系に書き換える必要がある 難易度:画像の歪みを考慮する必要がある 歪み補正と歪み付加の両方を画面上で補正する2. はじめに ビジョンシステムには、ピクセル平面座標系 (u, v)、画像座標系 (x, y)、カメラ座標系 ()、世界座標系 () の合計 4 つの座標系があります。それぞれの座標系には関係性があり、

自動運転では軌道予測が重要な役割を果たしており、自動運転軌道予測とは、車両の走行過程におけるさまざまなデータを分析し、将来の車両の走行軌跡を予測することを指します。自動運転のコアモジュールとして、軌道予測の品質は下流の計画制御にとって非常に重要です。軌道予測タスクには豊富な技術スタックがあり、自動運転の動的/静的知覚、高精度地図、車線境界線、ニューラル ネットワーク アーキテクチャ (CNN&GNN&Transformer) スキルなどに精通している必要があります。始めるのは非常に困難です。多くのファンは、できるだけ早く軌道予測を始めて、落とし穴を避けたいと考えています。今日は、軌道予測に関するよくある問題と入門的な学習方法を取り上げます。関連知識の紹介 1. プレビュー用紙は整っていますか? A: まずアンケートを見てください。

この論文では、自動運転においてさまざまな視野角 (遠近法や鳥瞰図など) から物体を正確に検出するという問題、特に、特徴を遠近法 (PV) 空間から鳥瞰図 (BEV) 空間に効果的に変換する方法について検討します。 Visual Transformation (VT) モジュールを介して実装されます。既存の手法は、2D から 3D への変換と 3D から 2D への変換という 2 つの戦略に大別されます。 2D から 3D への手法は、深さの確率を予測することで高密度の 2D フィーチャを改善しますが、特に遠方の領域では、深さ予測に固有の不確実性により不正確さが生じる可能性があります。 3D から 2D への方法では通常、3D クエリを使用して 2D フィーチャをサンプリングし、Transformer を通じて 3D と 2D フィーチャ間の対応のアテンション ウェイトを学習します。これにより、計算時間と展開時間が増加します。

著者の個人的な考えの一部 自動運転の分野では、BEV ベースのサブタスク/エンドツーエンド ソリューションの開発に伴い、高品質のマルチビュー トレーニング データとそれに対応するシミュレーション シーンの構築がますます重要になってきています。現在のタスクの問題点に対応して、「高品質」は 3 つの側面に分離できます。 さまざまな次元のロングテール シナリオ: 障害物データ内の近距離車両、車両切断中の正確な進行角、車線などラインデータ 曲率の異なるカーブやランプ・合流・合流などの撮影が難しいシーン。これらは多くの場合、大量のデータ収集と複雑なデータ マイニング戦略に依存しており、コストがかかります。 3D 真の値 - 一貫性の高い画像: 現在の BEV データ取得は、センサーの設置/校正、高精度マップ、再構成アルゴリズム自体のエラーの影響を受けることがよくあります。これが私を導いた

19 年前の論文を突然発見 GSLAM: A General SLAM Framework and Benchmark オープンソース コード: https://github.com/zdzhaoyong/GSLAM 全文に直接アクセスして、この作品の品質を感じてください ~ 1 抽象的な SLAM テクノロジー近年多くの成功を収め、多くのハイテク企業の注目を集めています。ただし、既存または新たなアルゴリズムへのインターフェイスを使用して、速度、堅牢性、移植性に関するベンチマークを効果的に実行する方法は依然として問題です。この論文では、GSLAM と呼ばれる新しい SLAM プラットフォームを提案します。これは、評価機能を提供するだけでなく、研究者が独自の SLAM システムを迅速に開発するための有用な方法を提供します。

この四角い男性は、目の前にいる「招かれざる客」の正体について考えながら眉をひそめていることに注意してください。彼女が危険な状況にあることが判明し、これに気づくと、彼女は問題を解決するための戦略を見つけるためにすぐに頭の中で探索を始めました。最終的に、彼女は現場から逃走し、できるだけ早く助けを求め、直ちに行動を起こすことにしました。同時に、反対側の人も彼女と同じことを考えていた……『マインクラフト』では、登場人物全員が人工知能によって制御されている、そんなシーンがありました。それぞれに個性的な設定があり、例えば先ほどの女の子は17歳ながら賢くて勇敢な配達員です。彼らは記憶力と思考力を持ち、Minecraft の舞台となるこの小さな町で人間と同じように暮らしています。彼らを動かすのはまったく新しいものであり、

9 月 23 日、論文「DeepModelFusion:ASurvey」が国立国防技術大学、JD.com、北京理工大学によって発表されました。ディープ モデルの融合/マージは、複数のディープ ラーニング モデルのパラメーターまたは予測を 1 つのモデルに結合する新しいテクノロジーです。さまざまなモデルの機能を組み合わせて、個々のモデルのバイアスとエラーを補償し、パフォーマンスを向上させます。大規模な深層学習モデル (LLM や基本モデルなど) での深層モデルの融合は、高い計算コスト、高次元のパラメーター空間、異なる異種モデル間の干渉など、いくつかの課題に直面しています。この記事では、既存のディープ モデル フュージョン手法を 4 つのカテゴリに分類します。 (1) 「パターン接続」。損失低減パスを介して重み空間内の解を接続し、より適切な初期モデル フュージョンを取得します。
