目次
SHAP と SHAP 値
Shap 内置图表
分类模型的SHAP values/图表
示例
ホームページ テクノロジー周辺機器 AI この記事では、SHAP: 機械学習のモデルの説明について説明します。

この記事では、SHAP: 機械学習のモデルの説明について説明します。

Jun 01, 2024 am 10:58 AM
AI 機械学習 xai

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が研究者や実務者にとって常に焦点となってきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI | XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。 モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデル予測間隔の推定により、モデル予測に関する決定的な情報が得られます。ローカル解釈可能アルゴリズムが役立ちます

XAI は、機械学習モデルがどのように意思決定を行うかを理解し、説明するためのツールとフレームワークのセットです。その中でも、Python の SHAP (SHApley Additive Explains) ライブラリは非常に便利なツールです。 SHAP ライブラリは、個々の予測と全体的な予測に対する特徴の寄与を定量化し、美しく使いやすい視覚化を提供します。

次に、Scikit-learn で構築された回帰および分類モデルの予測を理解するために、SHAP ライブラリの基本について概説します。

この記事では、SHAP: 機械学習のモデルの説明について説明します。

SHAP と SHAP 値

SHAP (Shapley Additive Explains) は、機械学習モデルの出力を解釈するためのゲーム理論の手法です。これは、古典的なゲーム理論のゲーム値とその関連拡張機能を活用して、最適なクレジット割り当てとローカル解釈を組み合わせます (詳細と引用については、関連論文を参照してください: https://github.com/shap/shap#quotes)。 SHAP は、モデル出力に対する各特徴の寄与を計算することにより、最適なクレジット割り当てと局所的な説明を提供します。このアプローチは、線形モデル、ツリー モデル、深層学習モデルなど、さまざまなタイプのモデルに適用できます。 SHAP の目標は、機械学習モデルの意思決定プロセスと予測結果に対する各機能の影響を理解するのに役立つ、直感的で解釈可能な方法を提供することです。 SHAP 値と関連拡張機能を使用することで、特徴の重要性をより正確かつ包括的に解釈することができ、モデルの SHAP+ 前の値は、予測に対する特徴の寄与を定量化するのに役立ちます。 SHAP 値がゼロに近づくほど、予測に対する特徴の寄与は小さくなり、SHAP 値がゼロから遠ざかるほど、予測に対する特徴の寄与は大きくなります。さらに、SHAP 値からは、予測に対する特徴の寄与もわかります。 SHAP 値がゼロに近い場合は、その特徴が予測にほとんど寄与していないことを意味し、SHAP 値がゼロから遠い場合は、

shap パッケージをインストールします:

pip install shap-i https://pypi.tuna.tsinghua.edu.cn/simple
ログイン後にコピー
次の例を見てみましょう。回帰問題のSHAP値の特徴を取得します。まずライブラリとサンプル データをロードし、糖尿病の進行を予測するモデルをすばやく構築します。

import numpy as npnp.set_printoptions(formatter={'float':lambda x:"{:.4f}".format(x)})import pandas as pdpd.options.display.float_format = "{:.3f}".formatimport seaborn as snsimport matplotlib.pyplot as pltsns.set(style='darkgrid', context='talk', palette='rainbow')from sklearn.datasets import load_diabetesfrom sklearn.model_selection import train_test_splitfrom sklearn.ensemble import (RandomForestRegressor, RandomForestClassifier)import shapshap.initjs()# Import sample datadiabetes = load_diabetes(as_frame=True)X = diabetes['data'].iloc[:, :4] # Select first 4 columnsy = diabetes['target']# Partition dataX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)print(f"Training features shape: {X_train.shape}")print(f"Training target shape: {y_train.shape}\n")print(f"Test features shape: {X_test.shape}")print(f"Test target shape: {y_test.shape}")display(X_train.head())# Train a simple modelmodel = RandomForestRegressor(random_state=42)model.fit(X_train, y_train)
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。 SHAP 値を取得する一般的な方法は、Explainer オブジェクトを使用することです。次に、Explainer オブジェクトを作成し、テスト データの shap_test 値を抽出します。

explainer = shap.Explainer(model)shap_test = explainer(X_test)print(f"Shap values length: {len(shap_test)}\n")print(f"Sample shap value:\n{shap_test[0]}")
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。shap_test には、各テスト インスタンスのレコードが含まれているため、長さは 89 です。最初のテスト レコードを見ると、それには 3 つの属性が含まれていることがわかります:

shap_test[0].base_values: ターゲットの基本値

shap_test[0].data: 各特徴の値

shap_test[ 0].values: 各オブジェクトの SHAP 値

base value: 基本値 (shap_test.base_values)、期待値 (explainer.expected_value) とも呼ばれ、トレーニング データのターゲット値の平均です。
print(f"Expected value: {explainer.expected_value[0]:.1f}")print(f"Average target value (training data): {y_train.mean():.1f}")print(f"Base value: {np.unique(shap_test.base_values)[0]:.1f}")
ログイン後にコピー
EaShap_test.data には同じ値が含まれています

この記事では、SHAP: 機械学習のモデルの説明について説明します。

Rreeee
values: Shap_test の最も重要な属性は値です。これを介して Shap 値にアクセスできるためです。操作を簡単にするために、SHAP 値を DataFrame に変換しましょう:

この記事では、SHAP: 機械学習のモデルの説明について説明します。

(shap_test.data == X_test).describe()
ログイン後にコピー

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    可以看到每条记录中每个特征的 SHAP 值。如果将这些 SHAP 值加到期望值上,就会得到预测值:

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    np.isclose(model.predict(X_test),  explainer.expected_value[0] + shap_df.sum(axis=1))
    ログイン後にコピー

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    现在我们已经有了 SHAP 值,可以进行自定义可视化,如下图所示,以理解特征的贡献:

    columns = shap_df.apply(np.abs).mean()\ .sort_values(ascending=False).indexfig, ax = plt.subplots(1, 2, figsize=(11,4))sns.barplot(data=shap_df[columns].apply(np.abs), orient='h', ax=ax[0])ax[0].set_title("Mean absolute shap value")sns.boxplot(data=shap_df[columns], orient='h', ax=ax[1])ax[1].set_title("Distribution of shap values");plt.show()
    ログイン後にコピー

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    左侧子图显示了每个特征的平均绝对 SHAP 值,而右侧子图显示了各特征的 SHAP 值分布。从这些图中可以看出,bmi 在所使用的4个特征中贡献最大。

    Shap 内置图表

    虽然我们可以使用 SHAP 值构建自己的可视化图表,但 shap 包提供了内置的华丽可视化图表。在本节中,我们将熟悉其中几种选择的可视化图表。我们将查看两种主要类型的图表:

    • 全局:可视化特征的整体贡献。这种类型的图表显示了特征在整个数据集上的汇总贡献。
    • 局部:显示特定实例中特征贡献的图表。这有助于我们深入了解单个预测。
    • 条形图/全局:对于之前显示的左侧子图,有一个等效的内置函数,只需几个按键即可调用:
    shap.plots.bar(shap_test)
    ログイン後にコピー

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    这个简单但有用的图表显示了特征贡献的强度。该图基于特征的平均绝对 SHAP 值而生成:shap_df.apply(np.abs).mean()。特征按照从上到下的顺序排列,具有最高平均绝对 SHAP 值的特征显示在顶部。

    • 总结图/全局:另一个有用的图是总结图:
    shap.summary_plot(shap_test)
    ログイン後にコピー

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    以下是解释这张图的指南:

    • 图的横轴显示了特征的 SHAP 值分布。每个点代表数据集中的一个记录。例如,我们可以看到对于 BMI 特征,点的分布相当散乱,几乎没有点位于 0 附近,而对于年龄特征,点更加集中地分布在 0 附近。
    • 点的颜色显示了特征值。这个额外的维度允许我们看到随着特征值的变化,SHAP 值如何变化。换句话说,我们可以看到关系的方向。例如,我们可以看到当 BMI 较高时(由热粉色点表示)SHAP 值倾向于较高,并且当 BMI 较低时(由蓝色点表示)SHAP 值倾向于较低。还有一些紫色点散布在整个光谱中。

    • 热力图/全局:热力图是另一种可视化 SHAP 值的方式。与将 SHAP 值聚合到平均值不同,我们看到以颜色编码的个体值。特征绘制在 y 轴上,记录绘制在 x 轴上:
    shap.plots.heatmap(shap_test)
    ログイン後にコピー

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    这个热力图的顶部还补充了每个记录的预测值(即 f(x))的线图。

    • Force plot/全局:这个交互式图表允许我们通过记录查看 SHAP 值的构成。
    shap.initjs()shap.force_plot(explainer.expected_value, shap_test.values, X_test)
    ログイン後にコピー

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    就像热力图一样,x 轴显示每个记录。正的 SHAP 值显示为红色,负的 SHAP 值显示为蓝色。例如,由于第一个记录的红色贡献比蓝色贡献多,因此该记录的预测值将高于期望值。

    交互性允许我们改变两个轴。例如,y 轴显示预测值 f(x),x 轴根据输出(预测)值排序,如上面的快照所示。

    • 条形图/局部:现在我们将看一下用于理解个别案例预测的图表。让我们从一个条形图开始:
    shap.plots.bar(shap_test[0])
    ログイン後にコピー

    この記事では、SHAP: 機械学習のモデルの説明について説明します。

    与“ 条形图/全局 ”中完全相同,只是这次我们将数据切片为单个记录。

  1. Force plot/局部:Force plot是单个记录的强制图。
shap.initjs()shap.plots.force(shap_test[0])
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。

分类模型的SHAP values/图表

上面示例是回归模型,下面我们以分类模型展示SHAP values及可视化:

import numpy as npnp.set_printoptions(formatter={'float':lambda x:"{:.4f}".format(x)})import pandas as pdpd.options.display.float_format = "{:.3f}".formatimport seaborn as snsimport matplotlib.pyplot as pltsns.set(style='darkgrid', context='talk', palette='rainbow')from sklearn.datasets import load_diabetesfrom sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierimport shapfrom sklearn.datasets import fetch_openml# 加载 Titanic 数据集titanic = fetch_openml('titanic', version=1, as_frame=True)df = titanic.frame# 选择特征和目标变量features = ['pclass', 'age', 'sibsp', 'parch', 'fare']df = df.dropna(subset=features + ['survived'])# 删除包含缺失值的行X = df[features]y = df['survived']# 分割数据集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练随机森林分类器model = RandomForestClassifier(n_estimators=100, random_state=42)model.fit(X_train, y_train)
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。

和回归模型一样的,shap values 值也是包括base_values 和values 值:

explainer = shap.Explainer(model)shap_test = explainer(X_test)print(f"Length of shap_test: {len(shap_test)}\n")print(f"Sample shap_test:\n{shap_test[0]}")print(f"Expected value: {explainer.expected_value[1]:.2f}")print(f"Average target value (training data): {y_train}")print(f"Base value: {np.unique(shap_test.base_values)[0]:.2f}")shap_df = pd.DataFrame(shap_test.values[:,:,1],  columns=shap_test.feature_names,  index=X_test.index)shap_df
ログイン後にコピー

我们仔细检查一下将 shap 值之和添加到预期概率是否会给出预测概率:

np.isclose(model.predict_proba(X_test)[:,1],  explainer.expected_value[1] + shap_df.sum(axis=1))
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。

内置图与回归模型是一致的,比如:

shap.plots.bar(shap_test[:,:,1])
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。

或者瀑布图如下:

shap.plots.waterfall(shap_test[:,:,1][0])
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。

示例

看一个具体的用例。我们将找出模型对幸存者预测最不准确的例子,并尝试理解模型为什么会做出错误的预测:

test = pd.concat([X_test, y_test], axis=1)test['probability'] = model.predict_proba(X_test)[:,1]test['order'] = np.arange(len(test))test.query("survived=='1'").nsmallest(5, 'probability')
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。

生存概率为第一个记录的746。让我们看看各个特征是如何对这一预测结果产生贡献的:

ind1 = test.query("survived=='1'")\ .nsmallest(1, 'probability')['order'].values[0]shap.plots.waterfall(shap_test[:,:,1][ind1])
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。

主要是客舱等级和年龄拉低了预测值。让我们在训练数据中找到类似的例子:

pd.concat([X_train, y_train], axis=1)[(X_train['pclass']==3) & (X_train['age']==29) & (X_train['fare'].between(7,8))]
ログイン後にコピー

この記事では、SHAP: 機械学習のモデルの説明について説明します。

所有类似的训练实例实际上都没有幸存。现在,这就说得通了!这是一个小的分析示例,展示了 SHAP 如何有助于揭示模型为何会做出错误预测。

在机器学习和数据科学中,模型的可解释性一直备受关注。可解释人工智能(XAI)通过提高模型透明度,增强对模型的信任。SHAP库是一个重要工具,通过量化特征对预测的贡献,提供可视化功能。本文介绍了SHAP库的基础知识,以及如何使用它来理解回归和分类模型的预测。通过具体用例,展示了SHAP如何帮助解释模型错误预测。

以上がこの記事では、SHAP: 機械学習のモデルの説明について説明します。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Jun 28, 2024 am 03:51 AM

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Jun 10, 2024 am 11:08 AM

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります 微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります Jun 11, 2024 pm 03:57 PM

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

GenAI および LLM の技術面接に関する 7 つのクールな質問 GenAI および LLM の技術面接に関する 7 つのクールな質問 Jun 07, 2024 am 10:06 AM

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 Jul 17, 2024 pm 06:37 PM

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性​​を実証しています。 「S」で始まる関連研究

SKハイニックスは8月6日に12層HBM3E、321層NANDなどのAI関連新製品を展示する。 SKハイニックスは8月6日に12層HBM3E、321層NANDなどのAI関連新製品を展示する。 Aug 01, 2024 pm 09:40 PM

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス

See all articles