制御可能な核融合における新たなマイルストーン、AI が初めてデュアルトカマク 3D 場の完全自動最適化を実現、Nature 副号に掲載

現在、プリンストンプラズマ物理研究所(PPPL)では、科学者たちは人工知能を利用して、核融合プラズマによるクリーンで信頼性の高いエネルギーの生成という人類が直面する差し迫った課題を解決しています。
従来のコンピューター コードとは異なり、機械学習は単なる命令のリストではなく、データを分析し、機能間の関係を推測し、新しい知識を学習して適応することができます。
PPPL+ 研究者らは、この学習して適応する能力により、さまざまな方法で融合反応の制御が改善される可能性があると考えています。これには、過熱プラズマを取り囲む容器の設計を完璧にすること、加熱方法を最適化すること、そしてますます長期間にわたる反応の安定した制御を維持することが含まれます。
最近、PPPLのAI研究は大きな成果を上げています。 PPPL の研究者は、磁気擾乱を回避し、核融合プラズマを安定させるために機械学習をどのように使用しているかを説明します。この成果は、持続可能な核融合エネルギーの実現に向けて極めて重要な意味を持つ。研究者らは、大量のデータを分析してトレーニングすることにより、プラズマの不安定性を検出して排除するための機械学習コードを正確に実行する機械学習モデルの開発に成功しました。 (出典: ゼネラル・アトミックスおよび韓国核融合エネルギー研究所)
ディスカッションペーパーの筆頭著者である PPPL 研究物理学者の SangKyeun Kim 氏は次のように述べています。

論文リンク:https://www.nature.com/articles/s41467-024-48415-w
核融合における「エッジ爆発」を抑制する
トカマク設計が核融合炉の実行可能な選択肢となるためには、Gに影響を与えることなくエッジバーストイベントを定期的に抑制する信頼性の高い方法を開発する必要があります。 科学者は、エッジアウトブレイクイベントを軽減するためにさまざまな方法を使用してきました。効果的なアプローチの 1 つは、外部 3D フィールド コイルの共鳴磁気摂動 (RMP) を利用することです。これは、エッジ バースト抑制に最も有望な方法の 1 つであることが証明されています。
図: トカマク内の 3D 磁場コイル構造。 (出典:論文) しかし、このシナリオには高いコストがかかり、標準的な高閉じ込めプラズマシステムと比較してH89とGの大幅な劣化をもたらし、それによって経済見通しが弱体化します。さらに、3D フィールドは、エッジのブローアウトよりもさらに深刻な、破壊として知られる壊滅的なコアの不安定性のリスクも高めます。したがって、エッジバーストフリー操作と高制約操作の安全なアクセスと互換性を早急に検討する必要があります。2台のトカマクで初達成
これは、リアルタイムでエッジレスバーストの開始と消滅の間のラグを利用してプラズマの閉じ込めを強化すると同時に、物理学を捕捉し核融合技術を最適化する際の ML の機能を拡張することによって実現されます。
図: DIII-D と KSTAR トカマクにおける ELM フリー放電の性能比較。 (出典: 論文) この統合は以下に役立ちます:
高度に強化されたプラズマ閉じ込めにより、2 台のマシンのエッジ局所モードフリー (ELM フリー) シナリオで最高の融合 G に達し、G が最大 90% 増加します
ML ベースの 3D フィールドを使用します。シミュレータは初めて全自動の 3D フィールド最適化を実現し、
はプラズマ動作の開始時から同時にバースト抑制を確立し、ITER 関連レベルに近いほぼ完全なエッジレス バースト動作を達成しました。この成果は、実験的な RMP 最適化に依存することはもはや実現不可能であり、受け入れられるアプローチではない国際熱核融合実験炉 (ITER) などの将来の装置にとって重要なステップとなります。
「プラズマには不安定性があり、核融合装置に深刻な損傷を引き起こす可能性があります。これらの物質を商用核融合容器で使用することはできません。私たちの研究はこの分野を進歩させ、人工知能が核融合の管理に役立つことを示しています」プラズマが可能な限り多くの核融合エネルギーを生成できるようにしながら、不安定性を回避し、反応における役割を果たしている」と責任著者であり、PPPL機械航空宇宙工学部准教授のエゲメン・コレメン氏は述べた。
完全に自動化された ML ベースの 3D フィールド最適化
この実験では、安全な ELM 抑制のために最適化された 3D 波形を見つけるために一連の放電が使用されます。
これに関連して、この研究では、自動 3D コイル最適化のための新しいパスを開発するための ML テクノロジーを導入し、その概念を初めて実証しています。
研究者らは、物理ベースのモデルをリアルタイムで活用するために、GPEC コード (ML-3D) のサロゲート モデルを開発しました。このモデルは ML アルゴリズムを使用して計算時間をミリ秒レベルまで加速し、KSTAR の適応 RMP オプティマイザーに統合されています。
ML-3D は、9 つの入力によって駆動される完全に接続された多層パーセプトロン (MLP) で構成されます。モデルをトレーニングするために、8490 KSTAR バランス型 GPEC シミュレーションが利用されました。
このアルゴリズムは、ELM ステータス モニター (Dα) 信号を利用して IRMP をリアルタイムで調整します。これにより、ELM 抑制にアクセスして維持するのに十分なエッジ 3D フィールドを維持できます。同時に、3D フィールド オプティマイザーは ML-3D の出力を使用して 3D コイル上の電流分布を調整し、中断を避けるために安全な 3D フィールドを確保します。
KSTAR 実験では、ML 統合適応 RMP オプティマイザーは 4.5 秒でトリガーされ、6.2 秒で安全な ELM 抑制を達成しました。
調査では、ELM フリーのアクセスを自動化するための実行可能なソリューションとして 3D-ML も示されています。 ML-3D は物理モデルに基づいており、実験データを必要としないため、ITER や将来の核融合炉に直接拡張可能です。将来のデバイスへのこの強力な適用性は、ML の統合された 3D フィールド最適化アプローチの利点を強調しています。さらに、より優れた磁場最適化とより高い融合性能は、より高い 3D コイル電流制限を備えた将来のデバイスで達成されることが期待されます。
研究は、高度に強化された核融合性能を備えたKSTARおよびDIII-D装置の制御されたELMフリー状態の最適化に成功し、将来の原子炉に関連するlow-n RMPからITERに関連するnRMP = 3 RMPまでをカバーし、さまざまなELMフリーの最高レベルをカバーしました。シナリオは 2 台のマシンで実現されます。
さらに、ML アルゴリズムと RMP 制御の革新的な統合により、完全に自動化された 3D フィールドの最適化と ELM フリーの操作が初めて可能になり、適応最適化プロセスによってサポートされるパフォーマンスが大幅に向上しました。この適応型アプローチは、RMP ELM 抑制と上限の間の互換性を示します。
さらに、制限電流部分と非誘導電流部分の損失を最小限に抑えることで、長いパルスシナリオ (45 秒以上続く) で安定した ELM 抑制を達成するための堅牢な戦略を提供します。
特に、nRMP = 3 RMP の DIII-D では大幅なパフォーマンス (G) の改善が観察され、初期の標準的な ELM 抑制状態と比較して 90% 以上の改善が示されました。この強化は、適応 RMP 制御だけでなく、プラズマ回転の自己一貫した進化にも起因すると考えられます。この応答により、非常に低い RMP 振幅での ELM 抑制が可能になり、それによってベースが強化されます。この機能は、適応変調に対する自己組織化された応答を通じてシステムが最適な状態に移行する良い例です。
さらに、適応スキームは初期の RMP ランプ法と組み合わされて、ほぼ完全に ELM フリーの動作で ITER 関連の ELM フリーのシナリオを実現します。これらの結果は、統合適応型 RMP 制御が ELM 抑制状態を最適化するための非常に有望なアプローチであり、実用的で経済的に実行可能な核融合エネルギーを達成する上で最も困難な課題の 1 つに対処できる可能性があることを裏付けています。
参考コンテンツ: https://phys.org/news/2024-05-ai-integrats-aspects-plasma-physics.html
[推奨読書]
自然に追加、300核融合におけるプラズマの「引き裂き」をミリ秒単位で事前に予測、プリンストンのチームが AI コントローラーを開発 大量のデータを素早く選別し、情報に基づいた意思決定を瞬時に行う、MIT、プリンストン、カーネギーメロン大学のチームが使用核融合研究用の LLM
シミュレーション精度が 65% 向上し、トレーニング時間が 3 倍以上短縮され、DeepMind は強化された Progress を使用します核融合の制御を学ぶ中で
以上が制御可能な核融合における新たなマイルストーン、AI が初めてデュアルトカマク 3D 場の完全自動最適化を実現、Nature 副号に掲載の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











でももしかしたら公園の老人には勝てないかもしれない?パリオリンピックの真っ最中で、卓球が注目を集めています。同時に、ロボットは卓球のプレーにも新たな進歩をもたらしました。先ほど、DeepMind は、卓球競技において人間のアマチュア選手のレベルに到達できる初の学習ロボット エージェントを提案しました。論文のアドレス: https://arxiv.org/pdf/2408.03906 DeepMind ロボットは卓球でどれくらい優れていますか?おそらく人間のアマチュアプレーヤーと同等です: フォアハンドとバックハンドの両方: 相手はさまざまなプレースタイルを使用しますが、ロボットもそれに耐えることができます: さまざまなスピンでサーブを受ける: ただし、ゲームの激しさはそれほど激しくないようです公園の老人。ロボット、卓球用

8月21日、2024年世界ロボット会議が北京で盛大に開催された。 SenseTimeのホームロボットブランド「Yuanluobot SenseRobot」は、全製品ファミリーを発表し、最近、世界初の家庭用チェスロボットとなるYuanluobot AIチェスプレイロボット - Chess Professional Edition(以下、「Yuanluobot SenseRobot」という)をリリースした。家。 Yuanluobo の 3 番目のチェス対局ロボット製品である新しい Guxiang ロボットは、AI およびエンジニアリング機械において多くの特別な技術アップグレードと革新を経て、初めて 3 次元のチェスの駒を拾う機能を実現しました。家庭用ロボットの機械的な爪を通して、チェスの対局、全員でのチェスの対局、記譜のレビューなどの人間と機械の機能を実行します。

もうすぐ学校が始まり、新学期を迎える生徒だけでなく、大型AIモデルも気を付けなければなりません。少し前、レディットはクロードが怠け者になったと不満を漏らすネチズンでいっぱいだった。 「レベルが大幅に低下し、頻繁に停止し、出力も非常に短くなりました。リリースの最初の週は、4 ページの文書全体を一度に翻訳できましたが、今では 0.5 ページの出力さえできません」 !」 https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ というタイトルの投稿で、「クロードには完全に失望しました」という内容でいっぱいだった。

北京で開催中の世界ロボット会議では、人型ロボットの展示が絶対的な注目となっているスターダストインテリジェントのブースでは、AIロボットアシスタントS1がダルシマー、武道、書道の3大パフォーマンスを披露した。文武両道を備えた 1 つの展示エリアには、多くの専門的な聴衆とメディアが集まりました。弾性ストリングのエレガントな演奏により、S1 は、スピード、強さ、正確さを備えた繊細な操作と絶対的なコントロールを発揮します。 CCTVニュースは、「書道」の背後にある模倣学習とインテリジェント制御に関する特別レポートを実施し、同社の創設者ライ・ジエ氏は、滑らかな動きの背後にあるハードウェア側が最高の力制御と最も人間らしい身体指標(速度、負荷)を追求していると説明した。など)、AI側では人の実際の動きのデータが収集され、強い状況に遭遇したときにロボットがより強くなり、急速に進化することを学習することができます。そしてアジャイル

貢献者はこの ACL カンファレンスから多くのことを学びました。 6日間のACL2024がタイのバンコクで開催されています。 ACL は、計算言語学と自然言語処理の分野におけるトップの国際会議で、国際計算言語学協会が主催し、毎年開催されます。 ACL は NLP 分野における学術的影響力において常に第一位にランクされており、CCF-A 推奨会議でもあります。今年の ACL カンファレンスは 62 回目であり、NLP 分野における 400 以上の最先端の作品が寄せられました。昨日の午後、カンファレンスは最優秀論文およびその他の賞を発表しました。今回の優秀論文賞は7件(未発表2件)、最優秀テーマ論文賞1件、優秀論文賞35件です。このカンファレンスでは、3 つの Resource Paper Award (ResourceAward) と Social Impact Award (

ビジョンとロボット学習の緊密な統合。最近話題の1X人型ロボットNEOと合わせて、2つのロボットハンドがスムーズに連携して服をたたむ、お茶を入れる、靴を詰めるといった動作をしていると、いよいよロボットの時代が到来するのではないかと感じられるかもしれません。実際、これらの滑らかな動きは、高度なロボット技術 + 精緻なフレーム設計 + マルチモーダル大型モデルの成果です。有用なロボットは多くの場合、環境との複雑かつ絶妙な相互作用を必要とし、環境は空間領域および時間領域の制約として表現できることがわかっています。たとえば、ロボットにお茶を注いでもらいたい場合、ロボットはまずティーポットのハンドルを掴んで、お茶をこぼさないように垂直に保ち、次にポットの口がカップの口と揃うまでスムーズに動かす必要があります。 、そしてティーポットを一定の角度に傾けます。これ

今日の午後、Hongmeng Zhixingは新しいブランドと新車を正式に歓迎しました。 8月6日、ファーウェイはHongmeng Smart Xingxing S9およびファーウェイのフルシナリオ新製品発表カンファレンスを開催し、パノラマスマートフラッグシップセダンXiangjie S9、新しいM7ProおよびHuawei novaFlip、MatePad Pro 12.2インチ、新しいMatePad Air、Huawei Bisheng Withを発表しました。レーザー プリンタ X1 シリーズ、FreeBuds6i、WATCHFIT3、スマート スクリーン S5Pro など、スマート トラベル、スマート オフィスからスマート ウェアに至るまで、多くの新しいオールシナリオ スマート製品を開発し、ファーウェイは消費者にスマートな体験を提供するフル シナリオのスマート エコシステムを構築し続けています。すべてのインターネット。宏孟志興氏:スマートカー業界のアップグレードを促進するための徹底的な権限付与 ファーウェイは中国の自動車業界パートナーと提携して、

会議の紹介 科学技術の急速な発展に伴い、人工知能は社会の進歩を促進する重要な力となっています。この時代に、分散型人工知能 (DAI) の革新と応用を目撃し、参加できることは幸運です。分散型人工知能は人工知能分野の重要な分野であり、近年ますます注目を集めています。大規模言語モデル (LLM) に基づくエージェントは、大規模モデルの強力な言語理解機能と生成機能を組み合わせることで、自然言語対話、知識推論、タスク計画などにおいて大きな可能性を示しました。 AIAgent は大きな言語モデルを引き継ぎ、現在の AI 界隈で話題になっています。アウ
