人工知能分野におけるgolangフレームワークの実践事例
Go フレームワークは人工知能の分野で広く使用されており、機械学習モデル (TensorFlow Lite など) のデプロイ、機械学習ライフサイクルの管理 (MLflow など)、および推論ルール エンジン (Cel-Go など) に使用できます。 )。
人工知能分野における Go フレームワークの実践例
最新のプログラミング言語としての Go は、その効率性、同時実行性、クロスプラットフォームの性質で知られており、人工知能 (AI) 。以下は、AI における Go フレームワークの実践例です:
1. TensorFlow Lite: 機械学習モデルのデプロイ
TensorFlow Lite は、モバイルおよび組み込みデバイスにモデルをデプロイできる軽量の機械学習フレームワークです。 TensorFlow Lite と統合された [EdgeX Foundry](https://www.edgexfoundry.org/) などの Go フレームワークにより、AI アプリケーションをエッジ デバイス上でデプロイして実行できるようになります。
import ( "fmt" "github.com/edgexfoundry/edgex-go/internal" ) func main() { edgex := internal.NewEdgeX() edgex.Bootstrap() defer edgex.Close() fmt.Println("EdgeX Foundry service running") }
2. MLflow: 機械学習のライフサイクルの管理
MLflow は、機械学習のライフサイクルを管理するためのオープンソース プラットフォームです。 [Kubeflow](https://github.com/kubeflow/kubeflow) などの Go フレームワークは、MLflow を Kubernetes エコシステムに統合し、AI モデルのデプロイとライフサイクル管理を簡素化します。
import ( "context" "github.com/kubeflow/pipelines/backend/src/agent/client" ) func main() { client, err := client.NewPipelineServiceClient("pipeline-service") if err != nil { fmt.Errorf("Failed to create Pipeline Service client: %v", err) } jobID, err := client.CreateJobRequest(context.Background(), &pipelinepb.CreateJobRequest{}) if err != nil { fmt.Errorf("Failed to create job: %v", err) } fmt.Printf("Job '%v' created\n", jobID) }
3. Cel-Go: 推論ルール エンジン
Cel-Go は、Google によって開発された推論ルール エンジンで、AI アプリケーションの推論と意思決定に使用されます。たとえば、[CloudEvents](https://github.com/cloudevents/sdk-go) は Cel-Go を使用してイベントを処理し、事前定義されたルールに基づいてアクションを実行します。
import ( "context" "log" cloudevents "github.com/cloudevents/sdk-go/v2" ) func main() { log.Printf("Starting event processor") c, err := cloudevents.NewClientHTTP() if err != nil { log.Fatalf("failed to create client, %v", err) } defer c.Close() h := cloudevents.NewHTTP() h.Handler = myHandler log.Printf("Listening on port %d", 8080) if err := h.Start(8080); err != nil { log.Fatalf("failed to start HTTP handler, %v", err) } }
結論:
Go フレームワークは AI 分野で幅広い用途があり、効率的で柔軟なソリューションを提供します。モデルのデプロイメントからライフサイクル管理、ルール推論に至るまで、これらのフレームワークは AI アプリケーションの開発と実装を簡素化します。
以上が人工知能分野におけるgolangフレームワークの実践事例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G

どんな時でも集中力は美徳です。著者 | 編集者 Tang Yitao | 人工知能の復活により、ハードウェア革新の新たな波が起きています。最も人気のある AIPin は前例のない否定的なレビューに遭遇しました。マーケス・ブラウンリー氏(MKBHD)はこれを、これまでレビューした中で最悪の製品だと評したが、ザ・ヴァージの編集者デイビッド・ピアース氏は、誰にもこのデバイスの購入を勧めないと述べた。競合製品である RabbitR1 はそれほど優れていません。この AI デバイスに関する最大の疑問は、これが明らかに単なるアプリであるのに、Rabbit は 200 ドルのハードウェアを構築したということです。多くの人がAIハードウェアのイノベーションをスマートフォン時代を打破するチャンスと捉え、スマートフォン時代に全力を注ぐ。

編集者 | ScienceAI 1年前、GoogleのTransformer論文の最後の著者であるLlion Jones氏は起業するために退職し、元Google研究者のDavid Ha氏と人工知能会社SakanaAIを共同設立した。 SakanaAI は、自然からインスピレーションを得たインテリジェンスに基づいて新しい基本モデルを作成すると主張しています。さて、SakanaAIは解答用紙を提出しました。 SakanaAI は、自動化された科学研究とオープンディスカバリのための世界初の AI システムである AIScientist のリリースを発表します。 AIScientist は、着想、コードの作成、実験の実行、結果の要約から、論文全体の執筆、査読の実施まで、AI 主導の科学研究と加速を可能にします。

7 月 25 日、ChinaJoy サミット フォーラム CDEC が上海の浦東にあるケリー ホテルで開催されました。この業界の先駆者による対話は、人工知能時代におけるポジショニングを再構築し、機会を捉え、成長のボトルネックを突破する方法を中心にしていました。会合では、NetEase副社長のPang Pangzhi氏がフォーラムに出席し、基調講演を行った。オリジナルコンテンツ ますます多くの AI テクノロジーが研究室から生み出され、正式に「実用化」されるにつれて、それらは不可欠な新たな生産力となっていると、Pang Dazhi 氏は、ゲーム業界は常に AI テクノロジーの最良のテストフィールドであると認識されていると述べました。 AI の影響を最初に認識し、AI の影響に適応した前哨基地でもあります。業界は、AI の可能性を最大限に引き出し、AI の配当をより多くの業界、さらには社会全体と共有する方法をさらに検討する必要があります。 「AI+ゲーム」の可能性をどう引き出すか
