ビッグ データ ストレージ、クエリ、管理には C++ を使用 ストレージ: Apache Cassandra: 分散型の列ベースの NoSQL データベース Apache HBase: BigTable に基づいて設計された列指向の NoSQL データベース MongoDB: 柔軟なデータ モデリングを提供するドキュメント指向の NoSQL データベース クエリ: Google Cloud Datastore: Google Datastore Database SDKMongoDB C++ Driver: 公式 MongoDB C++ Driver Cassandra C++ Driver: 公式 Apache Cassandra C++ Driver Management: Hadoop: オープンソース分散ファイル システムおよびコンピューティング エンジン Spark: 高速データ処理を提供する統合分析エンジン Hive:データ セット全体にわたる対話型クエリをサポートするデータ ウェアハウス システム
ビッグ データのストレージ、クエリ、管理に C++ を使用する
はじめに
データ量の爆発的な増加に伴い、効果的な方法が必要です。ビッグデータを保存、クエリ、管理します。 C++ は、強力なパフォーマンスとビッグ データ フレームワークのサポートにより、ビッグ データ タスクを処理するための推奨言語の 1 つになりました。この記事では、ビッグ データのストレージ、クエリ、管理に C++ を使用する方法を説明します。
ストレージ
// 使用Cassandra存储数据 cassandra::Session session("127.0.0.1"); cassandra::Statement stmt("INSERT INTO users (id, name, age) VALUES (1, 'John Doe', 30)"); session.execute(stmt);
Query
C++ は、次のようなビッグ データをクエリするためのさまざまなライブラリを提供します。
// 使用MongoDB查询数据 mongocxx::client client(mongocxx::uri("mongodb://localhost:27017")); mongocxx::collection users = client["mydb"]["users"]; auto result = users.find({});
管理
ビッグデータを管理および運用するには、次のツールを活用できます:
// 使用Hadoop计算词频 std::ifstream file("input.txt"); std::stringstream buffer; buffer << file.rdbuf(); std::string input = buffer.str(); hadoop::Job job; job.setJobName("WordCount"); hadoop::DistributedCache::addArchiveToClassPath("mapreduce.jar", "/tmp/mapreduce.jar"); hadoop::MapReduceAlgorithm mrJob(job); mrJob.setMapperClass("WordCountMapper"); mrJob.setReducerClass("WordCountReducer"); hadoop::InputFormat<hadoop::TextInputFormat> inputFormat; inputFormat.setInputPaths(hadoop::StringArray::from({ "input.txt" })); hadoop::OutputFormat<hadoop::TextOutputFormat> outputFormat; outputFormat.setOutputPath("output"); mrJob.setInputFormat("org.apache.hadoop.mapred.TextInputFormat"); mrJob.setOutputFormat("org.apache.hadoop.mapred.TextOutputFormat"); bool success = mrJob.waitForCompletion();
実践事例
一般的な実践事例は、C++ を使用してソーシャル メディア データを分析することです。 MongoDB を使用してユーザー データを保存し、Cassandra を使用して時系列データを保存し、Spark を使用してデータを分散および処理できます。このアプローチにより、膨大なソーシャル メディア データ セットを効率的に分析し、洞察を得て傾向を発見することができます。
以上がビッグデータのストレージ、クエリ、管理に C++ を使用するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。