配列のソートアルゴリズムは何ですか?
配列ソートアルゴリズムは、要素を特定の順序で配置するために使用されます。一般的なアルゴリズムの種類は次のとおりです。 バブル ソート: 隣接する要素を比較して位置を交換します。選択ソート: 最小の要素を見つけて、それを現在の位置に入れ替えます。挿入ソート: 要素を 1 つずつ正しい位置に挿入します。クイックソート: 分割統治法。配列を分割するピボット要素を選択します。マージソート: 分割統治、再帰的ソート、およびサブ配列のマージ。
配列ソートアルゴリズムの紹介と実践
コンピューターサイエンスにおいて、配列ソートアルゴリズムは、要素のセットを特定の順序で配置するために使用されるアルゴリズムです。並べ替えアルゴリズムは、その原理と効率に基づいてさまざまなタイプに分類されます。以下では、いくつかの一般的な配列ソート アルゴリズムを紹介し、実際のケースを通じてその使用法を示します。
バブルソート
バブルソートは、隣接する要素のサイズを順番に比較し、前の要素が次の要素より大きい場合、その要素を入れ替えるというシンプルでわかりやすいソートアルゴリズムです。ポジション。このプロセスは、すべての要素が整うまで繰り返されます。
def bubble_sort(arr): for i in range(len(arr) - 1): for j in range(len(arr) - i - 1): if arr[j] > arr[j + 1]: arr[j], arr[j + 1] = arr[j + 1], arr[j]
選択ソート
選択ソートも単純なソートアルゴリズムであり、その原理は、ソートされていない部分の最小の要素を見つけて、それを現在の位置の要素と交換することです。次に、すべての要素が整うまでこのプロセスを繰り返します。
def selection_sort(arr): for i in range(len(arr)): min_idx = i for j in range(i + 1, len(arr)): if arr[j] < arr[min_idx]: min_idx = j arr[i], arr[min_idx] = arr[min_idx], arr[i]
挿入ソート
挿入ソートは、挿入操作に基づいたソートアルゴリズムであり、その基本原理は、すべての要素が順番に配置されるまで、ソートされた部分の正しい位置に要素を1つずつ挿入することです。
def insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] j = i - 1 while j >= 0 and key < arr[j]: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key
Quicksort
Quicksort は、ピボット要素を選択して配列を 2 つの部分配列に分割し、すべての要素が順番に並ぶまで 2 つの部分配列を再帰的に並べ替えることによって機能する、分割統治型の並べ替えアルゴリズムです。
def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right)
マージソート
マージソートは、安定した効率的な分割統治ソートアルゴリズムであり、その原理は、配列をより小さいサブ配列に再帰的に分割し、すべての要素が得られるまでサブ配列をソートおよびマージすることです。順番に並べてあります。
def merge_sort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left_half = merge_sort(arr[:mid]) right_half = merge_sort(arr[mid:]) return merge(left_half, right_half) def merge(left, right): merged = [] left_idx, right_idx = 0, 0 while left_idx < len(left) and right_idx < len(right): if left[left_idx] <= right[right_idx]: merged.append(left[left_idx]) left_idx += 1 else: merged.append(right[right_idx]) right_idx += 1 merged.extend(left[left_idx:]) merged.extend(right[right_idx:]) return merged
実際的なケース
順序なしリストarr = [5, 2, 8, 3, 1, 9]
があると仮定すると、クイックソートアルゴリズムを使用してそれを並べ替えることができます。コードは次のとおりです:
arr = [5, 2, 8, 3, 1, 9] sorted_arr = quick_sort(arr) print(sorted_arr) # 输出:[1, 2, 3, 5, 8, 9]
以上が配列のソートアルゴリズムは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











foreach ループを使用して PHP 配列から重複要素を削除する方法は次のとおりです。配列を走査し、要素がすでに存在し、現在の位置が最初に出現しない場合は、要素を削除します。たとえば、データベース クエリの結果に重複レコードがある場合、このメソッドを使用してそれらを削除し、重複レコードのない結果を取得できます。

PHP で配列をディープ コピーする方法には、json_decode と json_encode を使用した JSON エンコードとデコードが含まれます。 array_map と clone を使用して、キーと値のディープ コピーを作成します。シリアル化と逆シリアル化には、serialize と unserialize を使用します。

PHP の配列キー値の反転メソッドのパフォーマンスを比較すると、array_flip() 関数は、大規模な配列 (100 万要素以上) では for ループよりもパフォーマンスが良く、所要時間が短いことがわかります。キー値を手動で反転する for ループ方式は、比較的長い時間がかかります。

多次元配列のソートは、単一列のソートとネストされたソートに分類できます。単一列のソートでは、array_multisort() 関数を使用して列ごとにソートできますが、ネストされたソートでは、配列を走査してソートするための再帰関数が必要です。具体的な例としては、製品名による並べ替えや、売上数量や価格による化合物の並べ替えなどがあります。

PHP の array_group_by 関数は、キーまたはクロージャ関数に基づいて配列内の要素をグループ化し、キーがグループ名、値がグループに属する要素の配列である連想配列を返すことができます。

PHP で配列のディープ コピーを実行するためのベスト プラクティスは、 json_decode(json_encode($arr)) を使用して配列を JSON 文字列に変換し、それから配列に戻すことです。 unserialize(serialize($arr)) を使用して配列を文字列にシリアル化し、それを新しい配列に逆シリアル化します。 RecursiveIteratorIterator を使用して、多次元配列を再帰的に走査します。

PHP の array_group() 関数を使用すると、指定したキーで配列をグループ化し、重複する要素を見つけることができます。この関数は次の手順で動作します。 key_callback を使用してグループ化キーを指定します。必要に応じて、value_callback を使用してグループ化値を決定します。グループ化された要素をカウントし、重複を特定します。したがって、array_group() 関数は、重複する要素を見つけて処理するのに非常に役立ちます。

PHP 配列重複排除アルゴリズムの複雑さ: array_unique(): O(n) array_flip()+array_keys(): O(n) foreach ループ: O(n^2)
