ホームページ バックエンド開発 C++ C++ で機械学習モデルを構築し、大規模なデータを処理するにはどうすればよいですか?

C++ で機械学習モデルを構築し、大規模なデータを処理するにはどうすればよいですか?

Jun 03, 2024 pm 03:27 PM
ビッグデータ 機械学習

C++ で機械学習モデルを構築し、大規模データを処理する方法: モデルを構築する: TensorFlow ライブラリを使用してモデル アーキテクチャを定義し、計算グラフを構築します。大規模データの処理: TensorFlow の Datasets API を使用して、大規模なデータセットを効率的にロードして前処理します。モデルをトレーニングする: TensorProtos を作成してデータを保存し、Session を使用してモデルをトレーニングします。モデルを評価する: セッションを実行してモデルの精度を評価します。

C++ で機械学習モデルを構築し、大規模なデータを処理するにはどうすればよいですか?

C++ で機械学習モデルを構築し、大規模データを処理する方法

はじめに

C++ は、その高いパフォーマンスとスケーラビリティで知られており、機械学習モデルを構築し、大規模なデータを処理するための優れたツールです。 -スケールデータセットは理想的な選択です。この記事では、大規模なデータの処理に焦点を当てて、C++ で機械学習パイプラインを実装する方法について説明します。

実践事例

C++ と TensorFlow ライブラリを使用して、画像分類のための機械学習モデルを構築します。このデータセットは、CIFAR-10 データセットからの 60,000 枚の画像で構成されています。

モデルの構築

// 导入 TensorFlow 库
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/public/graph_def_builder.h"
#include "tensorflow/core/public/tensor.h"

// 定义模型架构
GraphDefBuilder builder;
auto input = builder.AddPlaceholder(DataType::DT_FLOAT, TensorShape({1, 32, 32, 3}));
auto conv1 = builder.Conv2D(input, 32, {3, 3}, {1, 1}, "SAME");
auto conv2 = builder.Conv2D(conv1, 64, {3, 3}, {1, 1}, "SAME");
auto pool = builder.MaxPool(conv2, {2, 2}, {2, 2}, "SAME");
auto flattened = builder.Flatten(pool);
auto dense1 = builder.FullyConnected(flattened, 128, "relu");
auto dense2 = builder.FullyConnected(dense1, 10, "softmax");

// 将计算图构建成 TensorFlow 会话
Session session(Env::Default(), GraphDef(builder.Build()));
ログイン後にコピー

大規模データの処理

大規模データの処理には TensorFlow の [Datasets](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) API を使用します。データをスケールするこの API は、データを効率的に読み取り、前処理する方法を提供します:

// 从 CIFAR-10 数据集加载数据
auto dataset = Dataset::FromTensorSlices(data).Batch(16);
ログイン後にコピー

モデルをトレーニングする

// 创建 TensorProtos 以保存图像和标签数据
Tensor image_tensor(DataType::DT_FLOAT, TensorShape({16, 32, 32, 3}));
Tensor label_tensor(DataType::DT_INT32, TensorShape({16}));

// 训练模型
for (int i = 0; i < num_epochs; i++) {
  dataset->GetNext(&image_tensor, &label_tensor);
  session.Run({{{"input", image_tensor}, {"label", label_tensor}}}, nullptr);
}
ログイン後にコピー

モデルを評価する

Tensor accuracy_tensor(DataType::DT_FLOAT, TensorShape({}));
session.Run({}, {{"accuracy", &accuracy_tensor}});
cout << "Model accuracy: " << accuracy_tensor.scalar<float>() << endl;
ログイン後にコピー

以上がC++ で機械学習モデルを構築し、大規模なデータを処理するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

PHPのビッグデータ構造処理スキル PHPのビッグデータ構造処理スキル May 08, 2024 am 10:24 AM

ビッグ データ構造の処理スキル: チャンキング: データ セットを分割してチャンクに処理し、メモリ消費を削減します。ジェネレーター: データ セット全体をロードせずにデータ項目を 1 つずつ生成します。無制限のデータ セットに適しています。ストリーミング: ファイルやクエリ結果を 1 行ずつ読み取ります。大きなファイルやリモート データに適しています。外部ストレージ: 非常に大規模なデータ セットの場合は、データをデータベースまたは NoSQL に保存します。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

C++ の機械学習: C++ で一般的な機械学習アルゴリズムを実装するためのガイド C++ の機械学習: C++ で一般的な機械学習アルゴリズムを実装するためのガイド Jun 03, 2024 pm 07:33 PM

C++ では、機械学習アルゴリズムの実装には以下が含まれます。 線形回帰: 連続変数を予測するために使用されるステップには、データの読み込み、重みとバイアスの計算、パラメーターと予測の更新が含まれます。ロジスティック回帰: 離散変数の予測に使用されます。このプロセスは線形回帰に似ていますが、予測にシグモイド関数を使用します。サポート ベクター マシン: サポート ベクターの計算とラベルの予測を含む強力な分類および回帰アルゴリズム。

58 ポートレート プラットフォームの構築におけるアルゴリズムの適用 58 ポートレート プラットフォームの構築におけるアルゴリズムの適用 May 09, 2024 am 09:01 AM

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58

See all articles