Go 同時プログラミングにおけるエラー処理と回復戦略
同時プログラミングにおけるエラー処理には、アクティブなエラー処理 (エラー伝播) とパッシブなエラー処理 (エラー パイプライン) の 2 つの方法があります。リカバリ戦略には、リカバリ (パニックのキャッチ) と再試行 (複数の実行) の 2 つがあります。実際の事例では、これら 4 つの方法の使用法を示します。
Go 同時プログラミングにおけるエラー処理と回復戦略
エラー処理
Go 同時プログラミングでは、エラー処理が重要です。エラーを処理するには主に 2 つの方法があります:
- アクティブ エラー処理 (アクティブ エラー伝播): このアプローチは、ある関数から別の関数にエラーを明示的に渡すことに依存します。関数でエラーが発生すると、そのエラーが返され、呼び出し側の関数がエラーを処理する必要があります。
- 受動的エラー処理 (エラー パイプライン): このメソッドは、チャネルを使用してエラーを配信します。関数はエラーをチャネルに送信し、呼び出し側関数はチャネルからエラーを受け取ります。このアプローチでは柔軟性が高まりますが、コードは複雑になります。
回復戦略
エラー処理に加えて、同時プログラミングには回復戦略もあります。回復戦略は、エラーにより関数が適切に実行できなかった場合に実行されるアクションです。一般的な回復戦略は 2 つあります:
-
回復: この戦略は、パニックを捕捉し、組み込みの
recover
関数を使用して実行を再開します。 - 再試行: この戦略は、成功するか、事前に定義された再試行回数に達するまで、操作の実行を複数回試行します。
実際のケース
アクティブエラー処理
func CalculateAverage(numbers []int) (float64, error) { if len(numbers) == 0 { return 0, errors.New("empty slice") } sum := 0 for _, number := range numbers { sum += number } return float64(sum) / float64(len(numbers)), nil } func main() { numbers := []int{1, 2, 3, 4, 5} average, err := CalculateAverage(numbers) if err != nil { fmt.Println(err) return } fmt.Println(average) }
パッシブエラー処理
type ErrorChannel chan error func CalculateAverageWithChannel(numbers []int) ErrorChannel { ch := make(ErrorChannel) go func() { if len(numbers) == 0 { ch <- errors.New("empty slice") return } sum := 0 for _, number := range numbers { sum += number } ch <- nil close(ch) }() return ch } func main() { numbers := []int{1, 2, 3, 4, 5} ch := CalculateAverageWithChannel(numbers) for err := range ch { if err != nil { fmt.Println(err) return } fmt.Println("Average calculated successfully") } }
リカバリ
func CalculateAverageWithRecovery(numbers []int) float64 { defer func() { if r := recover(); r != nil { fmt.Println("Error occurred:", r) } }() if len(numbers) == 0 { panic("empty slice") } sum := 0 for _, number := range numbers { sum += number } return float64(sum) / float64(len(numbers)) } func main() { numbers := []int{1, 2, 3, 4, 5} average := CalculateAverageWithRecovery(numbers) fmt.Println(average) }
再試行
func CalculateAverageWithRetry(numbers []int) (float64, error) { var err error = errors.New("empty slice") maxRetries := 3 for i := 0; i < maxRetries; i++ { if len(numbers) == 0 { err = errors.New("empty slice") continue } sum := 0 for _, number := range numbers { sum += number } return float64(sum) / float64(len(numbers)), nil } return 0, err } func main() { numbers := []int{1, 2, 3, 4, 5} average, err := CalculateAverageWithRetry(numbers) if err != nil { fmt.Println(err) } else { fmt.Println(average) } }
以上がGo 同時プログラミングにおけるエラー処理と回復戦略の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











ミドルウェアを使用して Go 関数のエラー処理を改善する: 関数呼び出しをインターセプトして特定のロジックを実行できるミドルウェアの概念を紹介します。カスタム関数でエラー処理ロジックをラップするエラー処理ミドルウェアを作成します。ミドルウェアを使用してハンドラー関数をラップし、関数が呼び出される前にエラー処理ロジックが実行されるようにします。エラーの種類に基づいて適切なエラー コードを返します。 едоточитьсянаобработкеозибо

C++ では、例外処理は try-catch ブロックを通じてエラーを適切に処理します。一般的な例外の種類には、実行時エラー、論理エラー、範囲外エラーが含まれます。ファイルを開くエラー処理を例に挙げます。プログラムがファイルを開くのに失敗すると、例外がスローされ、エラー メッセージが出力され、catch ブロックを通じてエラー コードが返されます。これにより、プログラムを終了せずにエラーが処理されます。例外処理には、エラー処理の集中化、エラーの伝播、コードの堅牢性などの利点があります。

PHP の最適なエラー処理ツールとライブラリには次のものがあります。 組み込みメソッド: set_error_handler() および error_get_last() サードパーティ ツールキット: Whoops (デバッグとエラーのフォーマット) サードパーティのサービス: Sentry (エラーの報告と監視) サードパーティライブラリ: PHP-error-handler (カスタム エラー ログおよびスタック トレース) および Monolog (エラー ログ ハンドラー)

C++ クラス設計におけるエラー処理とログ記録には、次のものが含まれます。 例外処理: カスタム例外クラスを使用して例外をキャッチして処理し、特定のエラー情報を提供します。エラー コード: 整数または列挙を使用してエラー状態を表し、戻り値で返します。アサーション: 事前条件と事後条件を確認し、条件が満たされない場合は例外をスローします。 C++ ライブラリのロギング: std::cerr および std::clog を使用した基本的なロギング。外部ログ ライブラリ: レベル フィルタリングやログ ファイル ローテーションなどの高度な機能を提供するサードパーティ ライブラリを統合します。カスタム ログ クラス: 独自のログ クラスを作成し、基礎となるメカニズムを抽象化し、さまざまなレベルの情報を記録するための共通インターフェイスを提供します。

Go 関数では、非同期エラー処理はエラー チャネルを使用して、ゴルーチンからエラーを非同期に渡します。具体的な手順は次のとおりです。 エラー チャネルを作成します。 goroutine を開始して操作を実行し、非同期でエラーを送信します。チャネルからエラーを受信するには、select ステートメントを使用します。エラー メッセージの印刷やログ記録など、エラーを非同期的に処理します。このアプローチでは、エラー処理が呼び出しスレッドをブロックせず、実行をキャンセルできるため、同時コードのパフォーマンスとスケーラビリティが向上します。

Go 関数の単体テストでは、エラー処理に 2 つの主な戦略があります。1. エラーをエラー タイプの特定の値として表現し、期待値をアサートするために使用します。2. チャネルを使用してエラーをテスト関数に渡します。これは、同時実行コードのテストに適しています。実際のケースでは、関数が負の入力に対して 0 を返すようにするために、エラー値戦略が使用されます。

Golang では、エラー ラッパーを使用して、元のエラーにコンテキスト情報を追加することで新しいエラーを作成できます。これを使用すると、さまざまなライブラリまたはコンポーネントによってスローされるエラーの種類を統一し、デバッグとエラー処理を簡素化できます。手順は次のとおりです。errors.Wrap 関数を使用して、元のエラーを新しいエラーにラップします。新しいエラーには、元のエラーのコンテキスト情報が含まれています。 fmt.Printf を使用してラップされたエラーを出力し、より多くのコンテキストとアクション性を提供します。異なる種類のエラーを処理する場合は、errors.Wrap 関数を使用してエラーの種類を統一します。

Go でのエラー処理のベスト プラクティスには、エラー タイプの使用、常にエラーを返す、エラーのチェック、複数値の戻り値の使用、センチネル エラーの使用、およびエラー ラッパーの使用が含まれます。実用的な例: HTTP リクエスト ハンドラーで、ReadDataFromDatabase がエラーを返した場合は、500 エラー応答を返します。
