Java フレームワークと人工知能および機械学習の統合
人工知能 (AI) と機械学習 (ML) の台頭により、Java フレームワークとこれらのテクノロジーの統合により、インテリジェントなアプリケーションを作成するための強力なツールが開発者に提供されます。人気のある Java フレームワークには、Weka (機械学習アルゴリズム)、TensorFlow (ML モデルの構築とトレーニング)、H2O.ai、MLlib、Deeplearning4j などがあります。この統合により、自動化された意思決定、予測分析、パーソナライズされたエクスペリエンス、パターン認識などの利点がもたらされます。
Java フレームワークと人工知能および機械学習の統合
はじめに
人工知能 (AI) と機械学習 (ML) の急速な台頭により、これらのテクノロジーと Java フレームワークの統合が可能になりました。変化することがますます一般的になってきています。この統合により、インテリジェントでスケーラブルなアプリケーションを作成するための強力なツールが開発者に提供されます。この記事では、AI と ML を Java アプリケーションに統合するための主要なフレームワークと、それらがソフトウェア開発環境をどのように変えるのかについて説明します。
Weka
Weka は、分類、回帰、クラスタリングなどのさまざまな機械学習アルゴリズムを提供するオープンソース Java ライブラリです。使いやすさとアルゴリズムの幅広い選択肢で知られています。
実践例: Weka を使用した株価の予測
import weka.classifiers.functions.LinearRegression; import weka.core.Instances; import weka.core.converters.CSVLoader; // 导入训练数据 CSVLoader loader = new CSVLoader(); loader.setSource(new File("data.csv")); Instances data = loader.getDataSet(); // 创建线性回归模型 LinearRegression model = new LinearRegression(); // 训练模型 model.buildClassifier(data); // 预测未来的股票价格 double prediction = model.classifyInstance(newData);
TensorFlow
TensorFlow は、ML モデルの構築とトレーニングに人気のフレームワークです。データ フロー グラフに基づいており、開発者は複雑でスケーラブルな ML アーキテクチャを作成できます。
実践的なケーススタディ: TensorFlow を使用した画像分類器の構築
import org.tensorflow.keras.layers.Conv2D; import org.tensorflow.keras.layers.Dense; import org.tensorflow.keras.layers.Flatten; import org.tensorflow.keras.layers.MaxPooling2D; import org.tensorflow.keras.models.Sequential; // 创建神经网络模型 Sequential model = new Sequential(); // 添加卷积层和最大池化层 model.add(new Conv2D(32, (3, 3), activation="relu", input_shape=(28, 28, 1))); model.add(new MaxPooling2D((2, 2))); // 平坦化层和全连接层 model.add(new Flatten()); model.add(new Dense(128, activation="relu")); model.add(new Dense(10, activation="softmax")); // 编译和训练模型 model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=\["accuracy"\]); model.fit(trainImages, trainLabels, epochs=10); // 保存模型以供以后使用 model.save("my_image_classifier");
その他の人気のあるフレームワーク
Weka と TensorFlow に加えて、AI と ML の統合に利用できる他の Java フレームワークが多数あります。 ai
- MLlib
- Deeplearning4j
- 利点
AI と ML を Java アプリケーションに統合すると、次のような多くの利点が得られます。正確さ。
予測分析:
ML モデルを使用して将来の傾向を予測し、アプリケーションがデータに基づいてインテリジェントな意思決定を行えるようにします。- パーソナライズされたエクスペリエンス: AI アルゴリズムにより、ユーザー エクスペリエンスをパーソナライズし、カスタマイズされた推奨事項と予測を提供できます。
- パターン認識: ML モデルはデータ内のパターンの識別と活用に優れており、アプリケーションの機能を向上させることができます。
- 結論
- Java フレームワークと AI および ML の融合により、スマートでスケーラブルなアプリケーションを作成するための強力なツールが開発者に提供されます。これらのフレームワークを活用することで、開発者は意思決定を自動化し、予測分析を実行し、ユーザー エクスペリエンスをパーソナライズし、データのパターンを活用することができます。 AI および ML テクノロジーが進化し続けるにつれて、それらと Java フレームワークとの統合は、ソフトウェア開発環境に革新と機会を確実にもたらし続けるでしょう。
以上がJava フレームワークと人工知能および機械学習の統合の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス
