ホームページ テクノロジー周辺機器 AI 中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

Jun 26, 2024 am 01:17 AM
理論

中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

編集者 | 大根の皮

糖類は自然界で最も豊富な有機物質であり、生命に不可欠です。生理学的および病理学的プロセス中に炭水化物がどのようにタンパク質を調節するかを理解することは、主要な生物学的問題に対処し、新しい治療法を開発する機会を提供する可能性があります。

しかし、糖分子の多様性と複雑さにより、糖とタンパク質の結合部位と相互作用部位を実験的に同定することが困難となっています。

ここでは、中国科学院のチームが、特定のタンパク質構造上の糖結合部位を正確に予測できる深層学習モデルである DeepGlycanSite を開発しました。

DeepGlycanSite は、タンパク質の幾何学的および進化的特性を Transformer アーキテクチャを備えたディープ等変グラフ ニューラル ネットワークに統合し、そのパフォーマンスは以前の高度な手法を大幅に上回り、さまざまな糖分子の結合部位を効果的に予測できます。

突然変異誘発研究と組み合わせると、DeepGlycanSite は重要な G タンパク質共役受容体のグアノシン-5'-二リン酸認識部位を明らかにします。

これらの発見は、糖結合部位の予測における DeepGlycanSite の価値を実証し、治療上重要なタンパク質の糖調節の背後にある分子機構への洞察を提供することができます。

この研究は「DeepGlycanSiteによる高精度の炭水化物結合部位予測」と題され、2024年6月17日に「Nature Communications」に掲載されました。

中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

糖はあらゆる生物の細胞表面に遍在し、レクチン、抗体、酵素、トランスポーターなどのさまざまなタンパク質ファミリーと相互作用して、免疫応答、細胞分化、神経発達などの重要な生物学的プロセスを調節します。炭水化物とタンパク質の間の相互作用メカニズムを理解することは、炭水化物医薬品を開発するための基礎です。

しかし、炭水化物の構造の多様性と複雑さ、特にタンパク質との結合部位の多様性は、実験データの取得と薬剤設計に課題をもたらしています。

中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

イラスト: 糖分子の複雑さと糖結合部位の多様性。 (出典: 論文)

これまで、従来の結合部位予測法は、複雑な構造を持ち、サイズの変化が大きい糖分子には適していませんでした。これは、高解像度の糖タンパク質複合体構造データの不足と相まって、予測モデルのパフォーマンスを制限します。

近年、タンパク質データバンク (PDB) とオープングライコミックスリソースの急速な発展により、学術コミュニティは 19,000 を超えるそのような複合体の構造データを蓄積しました。こうした高品質なデータの増加により、AI技術を活用した正確な糖結合部位予測モデルの開発が可能となり、糖類薬物​​の発見と最適化プロセスの加速が期待されます。

最新の研究で、中国科学院チームは、標的タンパク質構造と糖結合部位を正確に予測できるディープ等変グラフニューラルネットワーク(EGNN)モデルであるDeepGlycanSiteを導入した。

中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

イラスト: DeepGlycanサイトの概要。 (出典: 論文)

チームは、DeepGlycanSite でタンパク質を残基レベルのグラフィック表現として表示するために、残基内および残基間の方向や距離、進化情報などの幾何学的特徴を活用しました。自己注意メカニズムを備えた Transformer ブロックと組み合わせることで、特徴抽出と複雑な関係の発見を強化します。

研究者らは、100 を超える固有の糖結合タンパク質を含む独立したテストセットで、DeepGlycanSite を現在の最先端の計算手法と比較しました。

結果は、DeepGlycanSite (0.625) の平均 Matthews 相関係数 (MCC) が StackCBPred (0.018) の 30 倍以上であり、他の配列ベースの予測方法をはるかに上回っていることを示しています。

従来のリガンド結合部位法では、疎水性やサイズが小さいために単純な糖分子の結合部位が除外される場合がありますが、DeepGlycanSite はこれらの部位を効果的に特定できます。

中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

図: さまざまな糖結合部位の予測におけるモデルのパフォーマンスの比較。 (出典: 論文)

さらに、DeepGlycanSite はタンパク質上の複数の糖結合部位の予測にも優れています。これは、多価複合糖質が糖とタンパク質の相互作用や生物学的プロセスの制御にどのような影響を与えるかを理解する上で非常に価値があります。たとえば、多価複合糖質は、糖分子とレクチンの間の相互作用に影響を与える化学ツールおよび薬剤候補として設計されています。

タンパク質の配列や構造情報のみを使用する従来の方法とは異なり、DeepGlycanSite は、優れたパフォーマンスの鍵となる可能性のあるタンパク質の幾何学的情報と進化的特性を十分に考慮します。

さらに、クエリ糖分子の化学構造を考慮すると、DeepGlycanSite はその特異的結合部位を予測できます。

中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

図: 糖の特異的結合部位の予測をクエリします。 (出典: 論文)

研究者らは、機能的に重要な G タンパク質共役受容体 (GPCR) への DeepGlycanSite の応用を研究しました。 AlphaFold2 によって予測されたタンパク質構造と炭水化物の化学構造を使用して、DeepGlycanSite はヒト P2Y14 上の GDP-Fuc の特異的結合部位を検出することに成功しました。

中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測する

イラスト: DeepGlycanSite の実験検証。 (出典: 論文)

AlphaFold2 の予測側鎖の品質を改善する必要がある一方で、DeepGlycanSite はタンパク質構造の精度にあまり依存せず、予測されたタンパク質構造を使用して糖-タンパク質相互作用についての洞察を提供できます。

要約すると、独立したテストセットとインビトロのケーススタディでの DeepGlycanSite の検証は、DeepGlycanSite が糖結合部位の予測に効果的なツールであることを示しています。研究者は DeepGlycanSite を使用して標的タンパク質上の糖結合ポケットを予測することができ、それによって糖とタンパク質の相互作用の理解を進めることができます。

糖は生物学的機能において重要な役割を果たしており、DeepGlycanSite は糖分子と糖結合タンパク質の生物学的機能の分析に役立つだけでなく、糖薬物の開発にも強力なツールを提供します。

論文リンク:https://www.nature.com/articles/s41467-024-49516-2

以上が中国科学院チームのTransformer深層学習モデルは、従来の方法の30倍の精度で糖とタンパク質の相互作用部位を予測するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

「Defect Spectrum」は、従来の欠陥検出の限界を打ち破り、超高精度かつ豊富なセマンティックな産業用欠陥検出を初めて実現します。 「Defect Spectrum」は、従来の欠陥検出の限界を打ち破り、超高精度かつ豊富なセマンティックな産業用欠陥検出を初めて実現します。 Jul 26, 2024 pm 05:38 PM

現代の製造において、正確な欠陥検出は製品の品​​質を確保するための鍵であるだけでなく、生産効率を向上させるための核心でもあります。ただし、既存の欠陥検出データセットには、実際のアプリケーションに必要な精度や意味論的な豊富さが欠けていることが多く、その結果、モデルが特定の欠陥カテゴリや位置を識別できなくなります。この問題を解決するために、広州香港科技大学と Simou Technology で構成されるトップの研究チームは、産業欠陥に関する詳細かつ意味的に豊富な大規模なアノテーションを提供する「DefectSpectrum」データセットを革新的に開発しました。表 1 に示すように、他の産業データ セットと比較して、「DefectSpectrum」データ セットは最も多くの欠陥注釈 (5438 個の欠陥サンプル) と最も詳細な欠陥分類 (125 個の欠陥カテゴリ) を提供します。

結晶相問題を解決するための数百万の結晶データを使用したトレーニング、深層学習手法 PhAI が Science 誌に掲載 結晶相問題を解決するための数百万の結晶データを使用したトレーニング、深層学習手法 PhAI が Science 誌に掲載 Aug 08, 2024 pm 09:22 PM

編集者 |KX 今日に至るまで、単純な金属から大きな膜タンパク質に至るまで、結晶学によって決定される構造の詳細と精度は、他のどの方法にも匹敵しません。しかし、最大の課題、いわゆる位相問題は、実験的に決定された振幅から位相情報を取得することのままです。デンマークのコペンハーゲン大学の研究者らは、結晶相の問題を解決するための PhAI と呼ばれる深層学習手法を開発しました。数百万の人工結晶構造とそれに対応する合成回折データを使用して訓練された深層学習ニューラル ネットワークは、正確な電子密度マップを生成できます。この研究では、この深層学習ベースの非経験的構造解法は、従来の非経験的計算法とは異なり、わずか 2 オングストロームの解像度で位相問題を解決できることが示されています。これは、原子解像度で利用可能なデータのわずか 10% ~ 20% に相当します。

NVIDIA 対話モデル ChatQA はバージョン 2.0 に進化し、コンテキストの長さは 128K と記載されています NVIDIA 対話モデル ChatQA はバージョン 2.0 に進化し、コンテキストの長さは 128K と記載されています Jul 26, 2024 am 08:40 AM

オープンな LLM コミュニティは百花繚乱の時代です Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1 などがご覧いただけます。優秀なパフォーマーモデル。しかし、GPT-4-Turboに代表される独自の大型モデルと比較すると、オープンモデルには依然として多くの分野で大きなギャップがあります。一般的なモデルに加えて、プログラミングと数学用の DeepSeek-Coder-V2 や視覚言語タスク用の InternVL など、主要な領域に特化したいくつかのオープン モデルが開発されています。

Google AI が IMO 数学オリンピック銀メダルを獲得、数理推論モデル AlphaProof が発売、強化学習が復活 Google AI が IMO 数学オリンピック銀メダルを獲得、数理推論モデル AlphaProof が発売、強化学習が復活 Jul 26, 2024 pm 02:40 PM

AI にとって、数学オリンピックはもはや問題ではありません。木曜日、Google DeepMind の人工知能は、AI を使用して今年の国際数学オリンピック IMO の本当の問題を解決するという偉業を達成し、金メダル獲得まであと一歩のところまで迫りました。先週終了したばかりの IMO コンテストでは、代数、組合せ論、幾何学、数論を含む 6 つの問題が出題されました。 Googleが提案したハイブリッドAIシステムは4問正解で28点を獲得し、銀メダルレベルに達した。今月初め、UCLA 終身教授のテレンス・タオ氏が、100 万ドルの賞金をかけて AI 数学オリンピック (AIMO Progress Award) を宣伝したばかりだったが、予想外なことに、AI の問題解決のレベルは 7 月以前にこのレベルまで向上していた。 IMO に関する質問を同時に行うのが最も難しいのは、最も歴史が長く、規模が最も大きく、最も否定的な IMO です。

PRO | なぜ MoE に基づく大規模モデルがより注目に値するのでしょうか? PRO | なぜ MoE に基づく大規模モデルがより注目に値するのでしょうか? Aug 07, 2024 pm 07:08 PM

2023 年には、AI のほぼすべての分野が前例のない速度で進化しています。同時に、AI は身体化されたインテリジェンスや自動運転などの主要な分野の技術的限界を押し広げています。マルチモーダルの流れのもと、AI大型モデルの主流アーキテクチャとしてのTransformerの状況は揺るがされるだろうか? MoE (専門家混合) アーキテクチャに基づく大規模モデルの検討が業界の新しいトレンドになっているのはなぜですか?ラージ ビジョン モデル (LVM) は、一般的な視覚における新たなブレークスルーとなる可能性がありますか? ...過去 6 か月間にリリースされたこのサイトの 2023 PRO メンバー ニュースレターから、上記の分野の技術トレンドと業界の変化を詳細に分析し、新しい分野での目標を達成するのに役立つ 10 の特別な解釈を選択しました。準備してください。この解釈は 2023 年の Week50 からのものです

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

Transformer に基づく浙江大学の化学逆合成予測モデルは、Nature サブジャーナルで 60.8% に達しました。 Transformer に基づく浙江大学の化学逆合成予測モデルは、Nature サブジャーナルで 60.8% に達しました。 Aug 06, 2024 pm 07:34 PM

編集者 | KX 逆合成は創薬や有機合成において重要なタスクであり、そのプロセスを高速化するために AI の使用が増えています。既存の AI 手法はパフォーマンスが不十分で、多様性が限られています。実際には、化学反応は多くの場合、反応物と生成物の間にかなりの重複を伴​​う局所的な分子変化を引き起こします。これに触発されて、浙江大学のHou Tingjun氏のチームは、単一ステップの逆合成予測を分子列編集タスクとして再定義し、標的分子列を反復的に改良して前駆体化合物を生成することを提案した。そして、高品質かつ多様な予測を実現できる編集ベースの逆合成モデルEditRetroを提案する。広範な実験により、このモデルが標準ベンチマーク データ セット USPTO-50 K で優れたパフォーマンスを達成し、トップ 1 の精度が 60.8% であることが示されました。

自然の視点: 医療における人工知能のテストは混乱に陥っています。何をすべきでしょうか? 自然の視点: 医療における人工知能のテストは混乱に陥っています。何をすべきでしょうか? Aug 22, 2024 pm 04:37 PM

編集者 | ScienceAI 限られた臨床データに基づいて、何百もの医療アルゴリズムが承認されています。科学者たちは、誰がツールをテストすべきか、そしてどのようにテストするのが最善かについて議論しています。デビン シン氏は、救急治療室で小児患者が治療を長時間待っている間に心停止に陥るのを目撃し、待ち時間を短縮するための AI の応用を模索するようになりました。 SickKids 緊急治療室からのトリアージ データを使用して、Singh 氏らは潜在的な診断を提供し、検査を推奨する一連の AI モデルを構築しました。ある研究では、これらのモデルにより医師の診察が 22.3% 短縮され、医療検査が必要な患者 1 人あたりの結果の処理が 3 時間近く高速化できることが示されました。ただし、研究における人工知能アルゴリズムの成功は、これを証明するだけです。

See all articles