ホームページ Java &#&チュートリアル LeetCode Day貪欲なアルゴリズム パート 1

LeetCode Day貪欲なアルゴリズム パート 1

Jul 12, 2024 pm 04:51 PM

LeetCode DayGreedy Algorithm Part 1

455. クッキーの割り当て

あなたは素晴らしい親で、子供たちにクッキーをあげたいと考えているとします。ただし、各子供に与えるクッキーは最大でも 1 つまでにしてください。

各子 i には貪欲係数 g[i] があり、これは子が満足する Cookie の最小サイズです。各クッキー j のサイズは s[j] です。 s[j] >= g[i] の場合、クッキー j を子 i に割り当てることができ、子 i は満足します。あなたの目標は、コンテンツの子の数を最大化し、最大数を出力することです。

例 1:

入力: g = [1,2,3]、s = [1,1]
出力: 1
説明: あなたには 3 人の子供と 2 つのクッキーがいます。 3 人の子供の貪欲因子は 1、2、3 です。
また、クッキーが 2 つありますが、サイズは両方とも 1 なので、貪欲係数が 1 のコンテンツを持つ子しか作成できません。
1 を出力する必要があります。
例 2:

入力: g = [1,2]、s = [1,2,3]
出力: 2
説明: あなたには 2 人の子供と 3 つのクッキーがあります。 2 人の子供の貪欲係数は 1、2 です。
クッキーが 3 つあり、そのサイズは子供たち全員を満足させるのに十分な大きさです。
2 を出力する必要があります。

制約:

1 0 1

    public int findContentChildren(int[] g, int[] s) {
        // avoid null pointer
        if(g.length == 0 || s.length ==0){
            return 0;
        }
        // 2 * nlogn
        Arrays.sort(g);
        Arrays.sort(s);

        int i = 0;
        int j = 0;
        int count = 0;
        while(i < g.length && j < s.length){
            if(g[i] <= s[j]){
                i++;
                j++;
                count++;
            } else{
                j++;
            }
        }
        return count;   
    }
ログイン後にコピー

時刻: n`logn

ループの別のバージョン
`
public int findContentChildren(int[] g, int[] s) {
// null ポインタを回避します
if(g.length == 0 || s.length ==0){
0 を返す;
}
// 2 * nlogn
Arrays.sort(g);
Arrays.sort(s);

    int j = 0;
    int count = 0;
    for(int i=0; i<s.length && j<g.length; i++){
        if(s[i] >= g[j]){
            j++;
            count++;
        }
    }
    return count;   
}
ログイン後にコピー

`

376. ウィグルサブシーケンス

ウィグル シーケンスは、連続する数値の差が正と負の間で厳密に交互になるシーケンスです。最初の違い (存在する場合) は、正または負のいずれかになります。 1 つの要素を持つシーケンスと 2 つの等しくない要素を持つシーケンスは、自明のことながらウィグル シーケンスです。

たとえば、[1, 7, 4, 9, 2, 5] は、差分 (6、-3、5、-7、3) が正と負を交互に繰り返すため、小刻みなシーケンスです。
対照的に、[1, 4, 7, 2, 5] と [1, 7, 4, 5, 5] はウィグル シーケンスではありません。 1 つ目は、最初の 2 つの差が正であるためではありません。2 つ目は、最後の差がゼロであるためではありません。
サブシーケンスは、元のシーケンスからいくつかの要素 (おそらくゼロ) を削除し、残りの要素を元の順序のままにすることによって取得されます。

整数配列 nums を指定すると、nums の最長のウィグル サブシーケンスの長さを返します。

例 1:

入力: nums = [1,7,4,9,2,5]
出力: 6
説明: シーケンス全体は、差異 (6、-3、5、-7、3) のあるウィグル シーケンスです。
例 2:

入力: nums = [1,17,5,10,13,15,10,5,16,8]
出力: 7
説明: この長さに達するサブシーケンスがいくつかあります。
1 つは [1, 17, 10, 13, 10, 16, 8] で、差分 (16、-7、3、-3、6、-8) があります。
例 3:

入力: nums = [1,2,3,4,5,6,7,8,9]
出力: 2

制約:

1 0

フォローアップ: O(n) 時間以内に解決できますか?

`
public int wggleMaxLength(int[] nums) {
if(nums.length == 0){
0 を返す;
}
int カウント = 1;
int preFlag = 0;
int pre = nums[0];

    for(int i=1; i<nums.length; i++){
        if(nums[i]-nums[i-1] != 0){
            int flag = (nums[i]-nums[i-1])/Math.abs(nums[i]-nums[i-1]);

            if(flag == -preFlag || preFlag == 0){
                preFlag = flag;
                count++;
            }
        }
    }
    return count;
}
ログイン後にコピー

`

53. 最大サブアレイ

整数配列 nums を指定して、
を見つけます 部分配列
最大の合計を求め、その合計を返します。

例 1:

入力: nums = [-2,1,-3,4,-1,2,1,-5,4]
出力: 6
説明: 部分配列 [4,-1,2,1] の合計は最大の 6 です。
例 2:

入力: nums = [1]
出力: 1
説明: 部分配列 [1] の合計は最大の 1 です。
例 3:

入力: nums = [5,4,-1,7,8]
出力: 23
説明: 部分配列 [5,4,-1,7,8] の合計は最大の 23 です。

制約:

1 -104

フォローアップ: O(n) ソリューションを見つけたら、より巧妙な分割統治アプローチを使用して別のソリューションをコーディングしてみてください。

`
public int maxSubArray(int[] nums) {
if(nums.length == 0){
0 を返す;
}
int max = Integer.MIN_VALUE;
int sum = Integer.MIN_VALUE;
for(int i=0; i if(数値[i] > 0){
if(合計 sum = nums[i];
}その他{
合計 += nums[i];

            }
            max = Math.max(max, sum);
        }else{
            if(sum<0){
                sum = nums[i];
            }else{
            sum += nums[i];
            }
            max = Math.max(max, sum);
        }
    }
    return max;

}
ログイン後にコピー

`

improve code
`
public int maxSubArray(int[] nums) {
if(nums.length == 0){
return 0;
}
int max = Integer.MIN_VALUE;
int sum = Integer.MIN_VALUE;
for(int i=0; i if(sum < 0){
sum = nums[i];
}else{
sum += nums[i];

            }
            max = Math.max(max, sum);
    }
    return max;

}
ログイン後にコピー

`

Another way for greedy
`
public int maxSubArray(int[] nums) {
if(nums.length == 0){
return 0;
}
int max = Integer.MIN_VALUE;
// int sum = Integer.MIN_VALUE;

    int sum = 0;
    for(int i=0; i<nums.length; i++){
        sum+= nums[i];
        if(max < sum){
            max = sum;
        }
        if(sum <0){
            sum = 0;
        }
            // if(sum < 0){
            //     sum = nums[i];
            // }else{
            //     sum += nums[i];

            // }
            // max = Math.max(max, sum);

    }
    return max;

}
ログイン後にコピー

`

以上がLeetCode Day貪欲なアルゴリズム パート 1の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

2025年のトップ4 JavaScriptフレームワーク:React、Angular、Vue、Svelte 2025年のトップ4 JavaScriptフレームワーク:React、Angular、Vue、Svelte Mar 07, 2025 pm 06:09 PM

2025年のトップ4 JavaScriptフレームワーク:React、Angular、Vue、Svelte

カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか? カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか? Mar 17, 2025 pm 05:44 PM

カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか?

Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか? Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか? Mar 17, 2025 pm 05:35 PM

Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか?

node.js 20:キーパフォーマンスが向上し、新機能 node.js 20:キーパフォーマンスが向上し、新機能 Mar 07, 2025 pm 06:12 PM

node.js 20:キーパフォーマンスが向上し、新機能

Iceberg:データレイクテーブルの未来 Iceberg:データレイクテーブルの未来 Mar 07, 2025 pm 06:31 PM

Iceberg:データレイクテーブルの未来

Spring Boot Snakeyaml 2.0 CVE-2022-1471問題修正 Spring Boot Snakeyaml 2.0 CVE-2022-1471問題修正 Mar 07, 2025 pm 05:52 PM

Spring Boot Snakeyaml 2.0 CVE-2022-1471問題修正

キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか? キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか? Mar 17, 2025 pm 05:43 PM

キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか?

高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか? 高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか? Mar 17, 2025 pm 05:46 PM

高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか?

See all articles