ホームページ バックエンド開発 Python チュートリアル カスタム文字起こしとクリッピング パイプライン

カスタム文字起こしとクリッピング パイプライン

Jul 17, 2024 pm 12:40 PM

Custom Transcription and Clipping Pipeline

なぜそれをしたのか:

私はこのプロジェクトに取り組んでおり、過酷なデータ エンジニアリング コンポーネントの公開を処理するためのツールを多数開発しました。その一部は独創的なものですが、ほとんどは次の Gemini モデルに急襲され、愚かな Google Colab Gemini 提案エンジン。 - ティム

指示と説明

説明書:
  1. 必要な依存関係がインストールされていることを確認してください (ffmpeg、whisperx など)。
  2. ルート ディレクトリをビデオ ファイルを含む作業ディレクトリに設定します。
  3. トランスクリプト内で検出するステージを定義します。
  4. スクリプトを実行してトランスクリプトを生成し、検出されたステージに基づいてビデオ クリップを抽出します。
説明:
  • このツールはルート ディレクトリ内のビデオ ファイルを処理します。
  • WhisperX モデルを使用して各ビデオを文字起こしします。
  • スクリプトは、トランスクリプトで見つかったステージに基づいてビデオからクリップを抽出します。
  • トランスクリプトとクリップは、指定された出力ディレクトリに保存されます。

コード:

import os
import shutil
import cv2
import numpy as np
import json
from PIL import Image
import random
import string
from rembg import remove
import ffmpeg
from datetime import timedelta
from ultralytics import YOLO
import whisperx
import gc
gc.collect()

# Define paths to directories
root = '/

workspace/'
stages = ['apple', 'banana', 'car', 'dog']

transcript_dir = root + 'transcripts'
clip_output_dir = root + 'stage1'
stage1_clips_dir = clip_output_dir

# Ensure the output directory exists
os.makedirs(transcript_dir, exist_ok=True)
os.makedirs(clip_output_dir, exist_ok=True)

def log_and_print(message):
    print(message)

def convert_time_to_seconds(time_str):
    hours, minutes, seconds_milliseconds = time_str.split(':')
    seconds, milliseconds = seconds_milliseconds.split(',')
    total_seconds = int(hours) * 3600 + int(minutes) * 60 + int(seconds) + int(milliseconds) / 1000
    return total_seconds

def transcribe_video(video_path):
    """Transcribe the video using Whisper model and return the transcript."""
    compute_type = "float32"
    model = whisperx.load_model("large-v2", device='cpu', compute_type=compute_type)
    audio = whisperx.load_audio(video_path)
    result = model.transcribe(audio, batch_size=4, language="en")
    model_a, metadata = whisperx.load_align_model(language_code=result["language"], device='cpu')
    aligned_result = whisperx.align(result["segments"], model_a, metadata, audio, 'cpu', return_char_alignments=False)
    segments = aligned_result["segments"]
    transcript = []
    for index, segment in enumerate(segments):
        start_time = str(0) + str(timedelta(seconds=int(segment['start']))) + ',000'
        end_time = str(0) + str(timedelta(seconds=int(segment['end']))) + ',000'
        text = segment['text']
        segment_text = {
            "index": index + 1,
            "start_time": start_time,
            "end_time": end_time,
            "text": text.strip(),
        }
        transcript.append(segment_text)
    return transcript

def extract_clips(video_path, transcript, stages):
    """Extract clips from the video based on the transcript and stages."""
    base_filename = os.path.splitext(os.path.basename(video_path))[0]
    clip_index = 0
    current_stage = None
    start_time = None
    partial_transcript = []

    for segment in transcript:
        segment_text = segment["text"].lower()
        for stage in stages:
            if stage in segment_text:
                if current_stage is not None:
                    end_time = convert_time_to_seconds(segment["start_time"])
                    output_clip_filename = f"{base_filename}.{current_stage}.mp4"
                    output_clip = os.path.join(clip_output_dir, output_clip_filename)
                    if not os.path.exists(output_clip):
                        try:
                            ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264',  pix_fmt='yuv420p').run(overwrite_output=True)
                            log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}")
                        except ffmpeg.Error as e:
                            log_and_print(f"Error extracting clip: {e}")

                        transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript])
                        transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json")
                        with open(transcript_path, 'w', encoding='utf-8') as f:
                            json.dump(transcript_text, f, ensure_ascii=False, indent=4)
                        log_and_print(f"Saved partial transcript to {transcript_path}")

                        partial_transcript = []

                current_stage = stage
                start_time = convert_time_to_seconds(segment["start_time"])
            partial_transcript.append(segment)

    if current_stage is not None:
        end_time = convert_time_to_seconds(transcript[-1]["end_time"])
        output_clip_filename = f"{base_filename}.{current_stage}.mp4"
        output_clip = os.path.join(clip_output_dir, output_clip_filename)
        if not os.path.exists(output_clip):
            try:
                ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264',  pix_fmt='yuv420p').run(overwrite_output=True)
                log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}")
            except ffmpeg.Error as e:
                log_and_print(f"Error extracting clip: {e}")

            transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript])
            transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json")
            with open(transcript_path, 'w', encoding='utf-8') as f:
                json.dump(transcript_text, f, ensure_ascii=False, indent=4)
            log_and_print(f"Saved partial transcript to {transcript_path}")

def process_transcripts(input_dir, transcript_dir, stages):
    """Process each video file to generate transcripts and extract clips."""
    video_files = [f for f in os.listdir(input_dir) if f.endswith('.mp4') or f.endswith('.MOV') or f.endswith('.mov')]

    for video_file in video_files:
        video_path = os.path.join(input_dir, video_file)
        transcript_path = os.path.join(transcript_dir, os.path.splitext(video_file)[0] + ".json")

        if not os.path.exists(transcript_path):
            transcript = transcribe_video(video_path)
            with open(transcript_path, 'w', encoding='utf-8') as f:
                json.dump(transcript, f, ensure_ascii=False, indent=4)
            log_and_print(f"Created transcript for {video_path}")
        else:
            with open(transcript_path, 'r', encoding='utf-8') as f:
                transcript = json.load(f)

        extract_clips(video_path, transcript, stages)

process_transcripts(root, transcript_dir, stages)
ログイン後にコピー

キーワードとハッシュタグ

  • キーワード: 文字起こし、ビデオ処理、クリッピング、WhisperX、自動化、ステージ、ビデオ クリップ
  • ハッシュタグ: #文字起こしツール #ビデオ処理 #クリッピングツール #WhisperX #ビデオオートメーション #ステージ検出 #ビデオクリップ

----------EOF----------

カナダ中西部出身のティムによって作成されました。
2024.
このドキュメントは GPL ライセンスを取得しています。

以上がカスタム文字起こしとクリッピング パイプラインの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

See all articles