予測モデリングと視覚化を備えた統合交通管理システム
概要
ここで紹介する交通管理システム (TMS) は、予測モデリングとリアルタイムの視覚化を統合して、効率的な交通制御とインシデント管理を促進します。このシステムは、グラフィカル インターフェイスに Python と Tkinter を使用して開発されており、機械学習アルゴリズムを利用して、気象条件とラッシュアワーのダイナミクスに基づいて交通量を予測します。このアプリケーションは、インタラクティブなグラフを通じて過去の交通データと予測された交通データを視覚化し、都市交通管理における意思決定に重要な洞察を提供します。
主な特長
- 交通量予測: 機械学習モデル (線形回帰とランダム フォレスト) を利用して、気温、降水量、ラッシュアワーの指標に基づいて交通量を予測します。
- グラフィカルな視覚化: インタラクティブなグラフで予測量と並んで過去のトラフィック傾向を表示し、理解と監視機能を強化します。
- リアルタイム交通シミュレーション: 信号の変更をシミュレーションして現実世界のシナリオを再現し、さまざまな条件下でのシステム応答の評価に役立ちます。
- インシデントレポート: ユーザーはインシデントを報告し、場所と説明を取得して迅速な管理と対応を行うことができます。
はじめる
前提条件
Python 3.x がインストールされていることを確認してください。 pip:
を使用して依存関係をインストールします。
pip install pandas matplotlib scikit-learn
インストール
- リポジトリのクローンを作成します:
git clone <https://github.com/EkeminiThompson/traffic_management_system.git> cd traffic-management-system
- 依存関係をインストールします:
pip install -r requirements.txt
- アプリケーションを実行します:
python main.py
使用法
-
トラフィック予測:
- 場所、日付、モデル (線形回帰またはランダム フォレスト) を選択します。
- 「交通量を予測」をクリックすると、予測される交通量が表示されます。
- 「グラフをクリア」ボタンを使用してグラフをクリアします。
-
グラフィック視覚化:
- グラフには、選択した日付の過去の交通量データと予測交通量が表示されます。
- 赤い破線は予測日を示し、緑の点は予測される交通量を示します。
-
交通信号制御:
- 信号の色 (赤、緑、黄) の変化をシミュレートして、交通の流れのダイナミクスを評価します。
-
インシデント報告:
- 場所と説明を入力して交通事故を報告します。
- 「インシデントを報告する」をクリックしてレポートを送信します。
コードの概要
main.py
# Main application using Tkinter for GUI import tkinter as tk from tkinter import messagebox, ttk import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import random from datetime import datetime from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor # Mock data for demonstration data = { 'temperature': [25, 28, 30, 22, 20], 'precipitation': [0, 0, 0.2, 0.5, 0], 'hour': [8, 9, 10, 17, 18], 'traffic_volume': [100, 200, 400, 300, 250] } df = pd.DataFrame(data) # Feature engineering df['is_rush_hour'] = df['hour'].apply(lambda x: 1 if (x >= 7 and x <= 9) or (x >= 16 and x <= 18) else 0) # Model training X = df[['temperature', 'precipitation', 'is_rush_hour']] y = df['traffic_volume'] # Create models linear_model = LinearRegression() linear_model.fit(X, y) forest_model = RandomForestRegressor(n_estimators=100, random_state=42) forest_model.fit(X, y) class TrafficManagementApp: def __init__(self, root): # Initialization of GUI # ... def on_submit(self): # Handling traffic prediction submission # ... def update_graph(self, location, date_str, prediction): # Updating graph with historical and predicted traffic data # ... # Other methods for GUI components and functionality if __name__ == "__main__": root = tk.Tk() app = TrafficManagementApp(root) root.mainloop()
結論
交通管理システムは、高度な予測分析と直観的なグラフィカル インターフェイスを組み合わせた、都市計画者や交通管制官向けの洗練されたツールです。このシステムは、交通パターンを予測し、データ傾向を視覚化することにより、意思決定能力を強化し、交通リソースのプロアクティブな管理を容易にします。ユーザーフレンドリーなデザインにより、アクセシビリティと実用性が保証され、現代の都市インフラ管理における貴重な資産となっています。
以上が予測モデリングと視覚化を備えた統合交通管理システムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
