ホームページ テクノロジー周辺機器 AI 大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。

大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。

Jul 18, 2024 pm 02:43 PM
業界 EAGLE

大規模言語モデル (LLM) はさまざまな分野でますます使用されています。ただし、テキスト生成プロセスは高価で時間がかかります。この非効率性は、自己回帰デコードのアルゴリズムに起因します。各単語 (トークン) の生成には前方パスが必要であり、数十億から数千億のパラメータを持つ LLM へのアクセスが必要です。その結果、従来の自己回帰デコードが遅くなります。

最近、ウォータールー大学、カナダベクトル研究所、北京大学、その他の機関が共同で EAGLE をリリースしました。これは、モデル出力テキストの一貫した配布を確保しながら、大規模な言語モデルの推論速度を向上させることを目的としています。この方法は、LLM の 2 番目のトップレベルの特徴ベクトルを外挿し、生成効率を大幅に向上させることができます。

大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。

  • 技術レポート: https://sites.google.com/view/eagle-llm
  • コード (商用 Apache 2.0 をサポート): https://github.com/SafeAILab/EAGLE

EAGLE には次の機能があります:

  • 通常の自己回帰デコード (13B) よりも 3 倍高速です。
  • Lookahead デコード (13B) よりも 2 倍高速です。
    メデューサデコードより(13B) 1.6 倍高速;
  • は、生成されたテキストの配布で通常のデコードと一致していることが証明でき、RTX 3090 でテストできます。
  • vLLM、DeepSpeed、Mamba、FlashAttendant、量子化、ハードウェア最適化などの他の並列テクノロジと組み合わせて使用​​できます。
  • 自己回帰デコードを高速化する 1 つの方法は、投機的サンプリングです。この手法では、より小さなドラフト モデルを使用して、標準の自己回帰生成によって次の複数の単語を推測します。元の LLM は、これらの推測された単語を並行して検証します (検証に必要な前方パスは 1 つだけです)。ドラフト モデルが α ワードを正確に予測する場合、元の LLM の 1 回の順方向パスで α+1 ワードを生成できます。
大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。推測的サンプリングでは、ドラフト モデルのタスクは、現在の単語シーケンスに基づいて次の単語を予測することです。パラメーターの数が大幅に少ないモデルを使用してこのタスクを実行することは非常に困難であり、最適とはいえない結果が得られることがよくあります。さらに、標準的な投機的サンプリング アプローチのドラフト モデルは、元の LLM によって抽出された豊富な意味情報を利用せずに次の単語を独立して予測するため、潜在的に非効率になります。
この制限は EAGLE の開発にインスピレーションを与えました。 EAGLE は、元の LLM によって抽出されたコンテキスト特徴 (つまり、モデルの 2 番目の最上層によって出力された特徴ベクトル) を利用します。 EAGLE は次の第一原則に基づいて構築されています:

特徴ベクトル シーケンスは圧縮可能であるため、以前の特徴ベクトルに基づいて後続の特徴ベクトルを予測することが容易になります。

EAGLE は、自動回帰ヘッドと呼ばれる軽量プラグインをトレーニングします。このプラグインは、単語埋め込み層と連携して、現在の特徴シーケンスに基づいて、元のモデルの 2 番目の最上層から次の特徴を予測します。次に、元の LLM の凍結された分類頭部を使用して、次の単語が予測されます。特徴には単語シーケンスよりも多くの情報が含まれるため、特徴を回帰するタスクは単語を予測するタスクよりもはるかに簡単になります。要約すると、EAGLE は小さな自己回帰ヘッドを使用して特徴レベルで外挿し、次に凍結分類ヘッドを利用して予測単語シーケンスを生成します。 Speculative Sampling、Medusa、Lookahead などの同様の作業と同様に、EAGLE はシステム全体のスループットではなく、キューごとの推論のレイテンシーに焦点を当てています。

EAGLE - 大規模言語モデル生成の効率を高める方法

上の図は、EAGLE と標準の投機的サンプリング、Medusa およ​​び Lookahead の間の入出力の違いを示しています。 EAGLEのワークフローを以下の図に示します。元の LLM の順方向パスで、EAGLE は 2 番目の最上層から特徴を収集します。自己回帰ヘッドは、これらの特徴と、以前に生成された単語の単語埋め込みを入力として受け取り、次の単語の推測を開始します。その後、凍結分類ヘッド (LM ヘッド) を使用して次の単語の分布を決定し、EAGLE がこの分布からサンプリングできるようにします。 EAGLEはサンプリングを複数回繰り返すことで、下図の右側に示すようなツリー状の生成処理を行います。この例では、EAGLE のトリプル フォワード パスは 10 単語のツリーを「推測」しました。

大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。

EAGLE は、軽量の自己回帰ヘッドを使用して、元の LLM の特徴を予測します。生成されたテキスト配布の一貫性を確保するために、EAGLE は予測されたツリー構造を検証します。この検証プロセスは、フォワード パスを使用して完了できます。この予測と検証のサイクルを通じて、EAGLE はテキスト単語を迅速に生成できます。

自己回帰ヘッドをトレーニングするコストは非常にわずかです。 EAGLE は、70,000 弱の対話ラウンドを含む ShareGPT データセットを使用してトレーニングされています。自己回帰ヘッドのトレーニング可能なパラメータの数も非常に少ないです。上の画像の青で示されているように、ほとんどのコンポーネントがフリーズされています。追加で必要なトレーニングは自己回帰ヘッドだけです。これは、0.24B ~ 0.99B のパラメーターを持つ単層の Transformer 構造です。自己回帰ヘッドは、GPU リソースが不十分な場合でもトレーニングできます。たとえば、Vicuna 33B の自己回帰は、8 カードの RTX 3090 サーバーで 24 時間でトレーニングできます。

なぜ単語埋め込みを使用して特徴を予測するのでしょうか?

Medusa は、次の単語、次の単語を予測するために 2 番目の最上層の機能のみを使用します... Medusa とは異なり、EAGLE は、現在サンプリングされている単語の埋め込みを自己回帰ヘッド部分への入力として動的に使用して予測を行います。この追加情報は、EAGLE がサンプリング プロセスで避けられないランダム性を処理するのに役立ちます。プロンプト単語が「I」であると仮定して、下の画像の例を考えてみましょう。 LLM は、「I」の後に「am」または「always」が続く確率を示します。 Medusa は、「am」と「always」のどちらがサンプリングされるかを考慮せず、「I」の下にある次の単語の確率を直接予測します。したがって、メデューサの目標は、「私」だけが与えられた場合に、「私は」または「私はいつも」の次の単語を予測することです。サンプリング プロセスのランダム性により、Medusa への同じ入力「I」でも、次の単語の出力「ready」または「begin」が異なる場合があり、その結果、入力と出力の間の一貫したマッピングが欠如します。対照的に、EAGLE への入力にはサンプリングされた結果の単語埋め込みが含まれており、入力と出力の間の一貫したマッピングが保証されます。この区別により、EAGLE はサンプリング プロセスによって確立されたコンテキストを考慮して、後続の単語をより正確に予測できるようになります。

大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。

ツリー状の生成構造

投機的サンプリング、Lookahead、Medusaなどの他の推測検証フレームワークとは異なり、EAGLEは「単語を推測する」段階でツリー状の生成構造を採用しています。より高いデコード効率を実現します。図に示すように、標準の投機的サンプリングと先読みの生成プロセスは線形または連鎖的です。推測段階ではコンテキストを構築できないため、Medusa の方法ではデカルト積を通じてツリーが生成され、隣接するレイヤー間に完全に接続されたグラフが生成されます。このアプローチでは、「I am begin」などの無意味な組み合わせが生じることがよくあります。対照的に、EAGLE はスパースなツリー構造を作成します。この疎なツリー構造は、意味のないシーケンスの形成を防ぎ、より合理的な単語の組み合わせにコンピューティング リソースを集中させます。

大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。

複数ラウンドの推測的サンプリング

標準的な推測的サンプリング方法では、「単語の推測」のプロセス中に分布の一貫性が維持されます。ツリー状の単語推測シナリオに適応するために、EAGLE はこのメソッドをマルチラウンド再帰形式に拡張します。複数ラウンドの投機的サンプリングの疑似コードを以下に示します。ツリー生成プロセス中に、EAGLE はサンプリングされた各単語に対応する確率を記録します。 EAGLE は、複数回の投機的サンプリングを通じて、最終的に生成された各単語の分布が元の LLM の分布と一致していることを保証します。

大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。

更多实验结果

下图展示了 EAGLE 在 Vicuna 33B 上关于不同任务中的加速效果。涉及大量固定模板的 “编程”(coding)任务显示出最佳的加速性能。

大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。

欢迎大家体验 EAGLE,并通过 GitHub issue 反馈建议:https://github.com/SafeAILab/EAGLE/issues

以上が大規模モデルの推論効率を損失なく 3 倍向上させた EAGLE をウォータールー大学、北京大学などがリリースしました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

DeepMind ロボットが卓球をすると、フォアハンドとバックハンドが空中に滑り出し、人間の初心者を完全に打ち負かしました DeepMind ロボットが卓球をすると、フォアハンドとバックハンドが空中に滑り出し、人間の初心者を完全に打ち負かしました Aug 09, 2024 pm 04:01 PM

でももしかしたら公園の老人には勝てないかもしれない?パリオリンピックの真っ最中で、卓球が注目を集めています。同時に、ロボットは卓球のプレーにも新たな進歩をもたらしました。先ほど、DeepMind は、卓球競技において人間のアマチュア選手のレベルに到達できる初の学習ロボット エージェントを提案しました。論文のアドレス: https://arxiv.org/pdf/2408.03906 DeepMind ロボットは卓球でどれくらい優れていますか?おそらく人間のアマチュアプレーヤーと同等です: フォアハンドとバックハンドの両方: 相手はさまざまなプレースタイルを使用しますが、ロボットもそれに耐えることができます: さまざまなスピンでサーブを受ける: ただし、ゲームの激しさはそれほど激しくないようです公園の老人。ロボット、卓球用

初のメカニカルクロー!元羅宝は2024年の世界ロボット会議に登場し、家庭に入ることができる初のチェスロボットを発表した 初のメカニカルクロー!元羅宝は2024年の世界ロボット会議に登場し、家庭に入ることができる初のチェスロボットを発表した Aug 21, 2024 pm 07:33 PM

8月21日、2024年世界ロボット会議が北京で盛大に開催された。 SenseTimeのホームロボットブランド「Yuanluobot SenseRobot」は、全製品ファミリーを発表し、最近、世界初の家庭用チェスロボットとなるYuanluobot AIチェスプレイロボット - Chess Professional Edition(以下、「Yuanluobot SenseRobot」という)をリリースした。家。 Yuanluobo の 3 番目のチェス対局ロボット製品である新しい Guxiang ロボットは、AI およびエンジニアリング機械において多くの特別な技術アップグレードと革新を経て、初めて 3 次元のチェスの駒を拾う機能を実現しました。家庭用ロボットの機械的な爪を通して、チェスの対局、全員でのチェスの対局、記譜のレビューなどの人間と機械の機能を実行します。

クロードも怠け者になってしまった!ネチズン: 自分に休日を与える方法を学びましょう クロードも怠け者になってしまった!ネチズン: 自分に休日を与える方法を学びましょう Sep 02, 2024 pm 01:56 PM

もうすぐ学校が始まり、新学期を迎える生徒だけでなく、大型AIモデルも気を付けなければなりません。少し前、レディットはクロードが怠け者になったと不満を漏らすネチズンでいっぱいだった。 「レベルが大幅に低下し、頻繁に停止し、出力も非常に短くなりました。リリースの最初の週は、4 ページの文書全体を一度に翻訳できましたが、今では 0.5 ページの出力さえできません」 !」 https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ というタイトルの投稿で、「クロードには完全に失望しました」という内容でいっぱいだった。

世界ロボット会議で「未来の高齢者介護の希望」を担う家庭用ロボットを囲みました 世界ロボット会議で「未来の高齢者介護の希望」を担う家庭用ロボットを囲みました Aug 22, 2024 pm 10:35 PM

北京で開催中の世界ロボット会議では、人型ロボットの展示が絶対的な注目となっているスターダストインテリジェントのブースでは、AIロボットアシスタントS1がダルシマー、武道、書道の3大パフォーマンスを披露した。文武両道を備えた 1 つの展示エリアには、多くの専門的な聴衆とメディアが集まりました。弾性ストリングのエレガントな演奏により、S1 は、スピード、強さ、正確さを備えた繊細な操作と絶対的なコントロールを発揮します。 CCTVニュースは、「書道」の背後にある模倣学習とインテリジェント制御に関する特別レポートを実施し、同社の創設者ライ・ジエ氏は、滑らかな動きの背後にあるハードウェア側が最高の力制御と最も人間らしい身体指標(速度、負荷)を追求していると説明した。など)、AI側では人の実際の動きのデータが収集され、強い状況に遭遇したときにロボットがより強くなり、急速に進化することを学習することができます。そしてアジャイル

ACL 2024 賞の発表: HuaTech による Oracle 解読に関する最優秀論文の 1 つ、GloVe Time Test Award ACL 2024 賞の発表: HuaTech による Oracle 解読に関する最優秀論文の 1 つ、GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

貢献者はこの ACL カンファレンスから多くのことを学びました。 6日間のACL2024がタイのバンコクで開催されています。 ACL は、計算言語学と自然言語処理の分野におけるトップの国際会議で、国際計算言語学協会が主催し、毎年開催されます。 ACL は NLP 分野における学術的影響力において常に第一位にランクされており、CCF-A 推奨会議でもあります。今年の ACL カンファレンスは 62 回目であり、NLP 分野における 400 以上の最先端の作品が寄せられました。昨日の午後、カンファレンスは最優秀論文およびその他の賞を発表しました。今回の優秀論文賞は7件(未発表2件)、最優秀テーマ論文賞1件、優秀論文賞35件です。このカンファレンスでは、3 つの Resource Paper Award (ResourceAward) と Social Impact Award (

Li Feifei 氏のチームは、ロボットに空間知能を与え、GPT-4o を統合する ReKep を提案しました Li Feifei 氏のチームは、ロボットに空間知能を与え、GPT-4o を統合する ReKep を提案しました Sep 03, 2024 pm 05:18 PM

ビジョンとロボット学習の緊密な統合。最近話題の1X人型ロボットNEOと合わせて、2つのロボットハンドがスムーズに連携して服をたたむ、お茶を入れる、靴を詰めるといった動作をしていると、いよいよロボットの時代が到来するのではないかと感じられるかもしれません。実際、これらの滑らかな動きは、高度なロボット技術 + 精緻なフレーム設計 + マルチモーダル大型モデルの成果です。有用なロボットは多くの場合、環境との複雑かつ絶妙な相互作用を必要とし、環境は空間領域および時間領域の制約として表現できることがわかっています。たとえば、ロボットにお茶を注いでもらいたい場合、ロボットはまずティーポットのハンドルを掴んで、お茶をこぼさないように垂直に保ち、次にポットの口がカップの口と揃うまでスムーズに動かす必要があります。 、そしてティーポットを一定の角度に傾けます。これ

分散型人工知能カンファレンス DAI 2024 論文募集: エージェント デイ、強化学習の父であるリチャード サットン氏が出席します。 Yan Shuicheng、Sergey Levine、DeepMind の科学者が基調講演を行います 分散型人工知能カンファレンス DAI 2024 論文募集: エージェント デイ、強化学習の父であるリチャード サットン氏が出席します。 Yan Shuicheng、Sergey Levine、DeepMind の科学者が基調講演を行います Aug 22, 2024 pm 08:02 PM

会議の紹介 科学技術の急速な発展に伴い、人工知能は社会の進歩を促進する重要な力となっています。この時代に、分散型人工知能 (DAI) の革新と応用を目撃し、参加できることは幸運です。分散型人工知能は人工知能分野の重要な分野であり、近年ますます注目を集めています。大規模言語モデル (LLM) に基づくエージェントは、大規模モデルの強力な言語理解機能と生成機能を組み合わせることで、自然言語対話、知識推論、タスク計画などにおいて大きな可能性を示しました。 AIAgent は大きな言語モデルを引き継ぎ、現在の AI 界隈で話題になっています。アウ

宏蒙スマートトラベルS9とフルシナリオ新製品発売カンファレンス、多数の大ヒット新製品が一緒にリリースされました 宏蒙スマートトラベルS9とフルシナリオ新製品発売カンファレンス、多数の大ヒット新製品が一緒にリリースされました Aug 08, 2024 am 07:02 AM

今日の午後、Hongmeng Zhixingは新しいブランドと新車を正式に歓迎しました。 8月6日、ファーウェイはHongmeng Smart Xingxing S9およびファーウェイのフルシナリオ新製品発表カンファレンスを開催し、パノラマスマートフラッグシップセダンXiangjie S9、新しいM7ProおよびHuawei novaFlip、MatePad Pro 12.2インチ、新しいMatePad Air、Huawei Bisheng Withを発表しました。レーザー プリンタ X1 シリーズ、FreeBuds6i、WATCHFIT3、スマート スクリーン S5Pro など、スマート トラベル、スマート オフィスからスマート ウェアに至るまで、多くの新しいオールシナリオ スマート製品を開発し、ファーウェイは消費者にスマートな体験を提供するフル シナリオのスマート エコシステムを構築し続けています。すべてのインターネット。宏孟志興氏:スマートカー業界のアップグレードを促進するための徹底的な権限付与 ファーウェイは中国の自動車業界パートナーと提携して、

See all articles