Science にログインすると、薬物親和性が 37 倍に増加し、AI がタンパク質と抗体の複合体の教師なし最適化を実行します
タンパク質は、細胞の構成、筋肉の収縮、食物の消化、ウイルスの識別など、多くの生物学的機能に関与しています。
より良いタンパク質(抗体を含む)を設計するために、科学者はタンパク質が必要な機能を獲得するまで、異なる位置でアミノ酸の突然変異(タンパク質を構成する単位を特定の順序で並べる)を繰り返すことがよくあります。
しかし、世界には砂粒よりも多くのアミノ酸配列が存在するため、最良のタンパク質、つまり最良の可能性のある薬剤を見つけることは、多くの場合困難です。この課題に直面したとき、科学者は多くの場合、数百万ドルを費やして、生物学的システムの小型化、簡略化されたバージョンをテストします。
「これには多くの推測と検証が必要です。」スタンフォード大学の化学工学助教授でアーク研究所のイノベーションフェローであるブライアン・L・ヒエ氏は次のように述べています。
スタンフォード大学の科学者たちは、より優れた抗体医薬品をより迅速かつ正確に生み出す分子変化を予測できる、機械学習に基づく新しい方法を開発しました。タンパク質骨格の 3D 構造とアミノ酸配列に基づく大規模な言語モデルを組み合わせることで、研究者らは数分でまれで望ましい変異を見つけることができました。
この研究は「構造情報を与えられた言語モデルを用いたタンパク質と抗体複合体の教師なし進化」というタイトルで、2024年7月4日に「サイエンス」誌に掲載されました。
配列情報のみに基づいてトレーニングされた大規模な言語モデルは、タンパク質設計の高レベルの原則を学習できます。ただし、配列に加えて、タンパク質の三次元構造もその特定の機能、活性、および進化可能性を決定します。
抗体工学の問題について、スタンフォード大学の研究者らは、構造的に情報を与えられたタンパク質言語モデルを適用して、既知の抗体または抗体-抗原複合体構造によって制約される適合性の高い配列を予測しました。
研究により、タンパク質の構造バックボーン座標で強化された普遍的なタンパク質言語モデルが、個々の機能タスクをモデル化する必要なしに、さまざまなタンパク質の進化を導くことができることが示されています。
-
構造誘導パラダイム:
- は、タンパク質の機能やフィットネスの明示的な定義をモデル化しません。
- タンパク質骨格の折り畳みを保持する領域に焦点を当て、フィットネスの状況を間接的に調査します。
- 高い配列尤度範囲内の進化が、高適応度バリアントの有効な事前確率であると仮定します。
-
幅広い用途:
- は、酵素触媒作用、抗生物質耐性、化学療法耐性など、さまざまな環境におけるタンパク質のフィットネス状況を間接的に研究できます。
-
タンパク質複合体設計:
- 単鎖構造のみでトレーニングされた ESM-IF1 は、タンパク質複合体を設計するために拡張できます。
- 構造情報言語モデルが特徴を組み合わせてポリタンパク質に一般化することを暗黙的に学習できることを示します。
-
ヒト抗体進化:
- この方法は、ヒト抗体の進化にとって特に価値があり、さまざまな病気の治療に使用できます。
- 抗体は標的抗原に結合することで保護を提供します。
-
大量のデータを置き換える:
- 構造体は大量のデータを置き換えることができ、コンピューターは引き続き学習できます。
- より多くの抗体に最適化の機会があります。
-
指向性進化:
- この方法は、複数のタンパク質の指向性進化活動を実験的に導くために使用されます。
- 野生型タンパク質よりも優れた機能活性を備えたデザインを生成します。
- ラベル付けされたフィットネスデータを分析したり、タスク固有のモデルを監視したりする必要はありません。
図: 構造情報言語モデルを使用して抗体を進化させると、中和能力と回復力を向上させることができます。 (出典: 論文)
この方法を用いて、チームは重症急性呼吸器症候群コロナウイルス2型(SARS-CoV-2)変異体の治療のための2つの治療用臨床抗体の候補を約30個スクリーニングした。同時に、研究者らは、BQ.1.1 および XBB.1.5 抗体エスケープ ウイルス変異体に対する中和の 25 倍増加と親和性の 37 倍の増加をそれぞれ達成しました。
結論として、このツールは、新しい病気や進行中の病気に迅速に対応するのに役立ちます。また、より効果的な医薬品の製造に対する障壁も低くなります。より強力な薬剤は、より少ない用量で済むことを意味し、より多くの患者が所定の用量から恩恵を受けることができることを意味します。
論文リンク: https://www.science.org/doi/10.1126/science.adk8946
関連レポート: https://phys.org/news/2024-07-ai-approach-optimizes-抗体医薬品.html
以上がScience にログインすると、薬物親和性が 37 倍に増加し、AI がタンパク質と抗体の複合体の教師なし最適化を実行しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

現代の製造において、正確な欠陥検出は製品の品質を確保するための鍵であるだけでなく、生産効率を向上させるための核心でもあります。ただし、既存の欠陥検出データセットには、実際のアプリケーションに必要な精度や意味論的な豊富さが欠けていることが多く、その結果、モデルが特定の欠陥カテゴリや位置を識別できなくなります。この問題を解決するために、広州香港科技大学と Simou Technology で構成されるトップの研究チームは、産業欠陥に関する詳細かつ意味的に豊富な大規模なアノテーションを提供する「DefectSpectrum」データセットを革新的に開発しました。表 1 に示すように、他の産業データ セットと比較して、「DefectSpectrum」データ セットは最も多くの欠陥注釈 (5438 個の欠陥サンプル) と最も詳細な欠陥分類 (125 個の欠陥カテゴリ) を提供します。

編集者 |KX 今日に至るまで、単純な金属から大きな膜タンパク質に至るまで、結晶学によって決定される構造の詳細と精度は、他のどの方法にも匹敵しません。しかし、最大の課題、いわゆる位相問題は、実験的に決定された振幅から位相情報を取得することのままです。デンマークのコペンハーゲン大学の研究者らは、結晶相の問題を解決するための PhAI と呼ばれる深層学習手法を開発しました。数百万の人工結晶構造とそれに対応する合成回折データを使用して訓練された深層学習ニューラル ネットワークは、正確な電子密度マップを生成できます。この研究では、この深層学習ベースの非経験的構造解法は、従来の非経験的計算法とは異なり、わずか 2 オングストロームの解像度で位相問題を解決できることが示されています。これは、原子解像度で利用可能なデータのわずか 10% ~ 20% に相当します。

オープンな LLM コミュニティは百花繚乱の時代です Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1 などがご覧いただけます。優秀なパフォーマーモデル。しかし、GPT-4-Turboに代表される独自の大型モデルと比較すると、オープンモデルには依然として多くの分野で大きなギャップがあります。一般的なモデルに加えて、プログラミングと数学用の DeepSeek-Coder-V2 や視覚言語タスク用の InternVL など、主要な領域に特化したいくつかのオープン モデルが開発されています。

AI にとって、数学オリンピックはもはや問題ではありません。木曜日、Google DeepMind の人工知能は、AI を使用して今年の国際数学オリンピック IMO の本当の問題を解決するという偉業を達成し、金メダル獲得まであと一歩のところまで迫りました。先週終了したばかりの IMO コンテストでは、代数、組合せ論、幾何学、数論を含む 6 つの問題が出題されました。 Googleが提案したハイブリッドAIシステムは4問正解で28点を獲得し、銀メダルレベルに達した。今月初め、UCLA 終身教授のテレンス・タオ氏が、100 万ドルの賞金をかけて AI 数学オリンピック (AIMO Progress Award) を宣伝したばかりだったが、予想外なことに、AI の問題解決のレベルは 7 月以前にこのレベルまで向上していた。 IMO に関する質問を同時に行うのが最も難しいのは、最も歴史が長く、規模が最も大きく、最も否定的な IMO です。

2023 年には、AI のほぼすべての分野が前例のない速度で進化しています。同時に、AI は身体化されたインテリジェンスや自動運転などの主要な分野の技術的限界を押し広げています。マルチモーダルの流れのもと、AI大型モデルの主流アーキテクチャとしてのTransformerの状況は揺るがされるだろうか? MoE (専門家混合) アーキテクチャに基づく大規模モデルの検討が業界の新しいトレンドになっているのはなぜですか?ラージ ビジョン モデル (LVM) は、一般的な視覚における新たなブレークスルーとなる可能性がありますか? ...過去 6 か月間にリリースされたこのサイトの 2023 PRO メンバー ニュースレターから、上記の分野の技術トレンドと業界の変化を詳細に分析し、新しい分野での目標を達成するのに役立つ 10 の特別な解釈を選択しました。準備してください。この解釈は 2023 年の Week50 からのものです

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 逆合成は創薬や有機合成において重要なタスクであり、そのプロセスを高速化するために AI の使用が増えています。既存の AI 手法はパフォーマンスが不十分で、多様性が限られています。実際には、化学反応は多くの場合、反応物と生成物の間にかなりの重複を伴う局所的な分子変化を引き起こします。これに触発されて、浙江大学のHou Tingjun氏のチームは、単一ステップの逆合成予測を分子列編集タスクとして再定義し、標的分子列を反復的に改良して前駆体化合物を生成することを提案した。そして、高品質かつ多様な予測を実現できる編集ベースの逆合成モデルEditRetroを提案する。広範な実験により、このモデルが標準ベンチマーク データ セット USPTO-50 K で優れたパフォーマンスを達成し、トップ 1 の精度が 60.8% であることが示されました。
