ホームページ バックエンド開発 Python チュートリアル Beautiful Soup を使用してパブリック Web からデータを抽出する方法

Beautiful Soup を使用してパブリック Web からデータを抽出する方法

Aug 02, 2024 am 09:20 AM

How Beautiful Soup is used to extract data out of the Public Web

Beautiful Soup は、Web ページからデータを収集するために使用される Python ライブラリです。 HTML および XML ドキュメントを解析するための解析ツリーを作成し、必要な情報を簡単に抽出できるようにします。

Beautiful Soup は、Web スクレイピングのためのいくつかの重要な機能を提供します。

  1. 解析ツリーのナビゲート: 解析ツリーを簡単にナビゲートして、要素、タグ、属性を検索できます。
  2. 解析ツリーの変更: タグや属性の追加、削除、更新など、解析ツリーを変更できます。
  3. 出力形式: 解析ツリーを文字列に変換して戻すことができるため、変更したコンテンツを簡単に保存できます。

Beautiful Soup を使用するには、lxml や html.parser などのパーサーとともにライブラリをインストールする必要があります。 pip
を使用してインストールできます。

#Install Beautiful Soup using pip.
pip install beautifulsoup4 lxml
ログイン後にコピー

ページネーションの処理

複数のページにまたがってコンテンツを表示する Web サイトを扱う場合、すべてのデータを収集するにはページネーションの処理が不可欠です。

  1. ページネーション構造を特定する: Web サイトを検査して、ページネーションがどのように構造化されているか (次ページ ボタンや番号付きリンクなど) を理解します。
  2. ページの反復: ループを使用して各ページを反復し、データをスクレイピングします。
  3. URL またはパラメータを更新します: URL またはパラメータを変更して、次のページのコンテンツを取得します。
import requests
from bs4 import BeautifulSoup

base_url = 'https://example-blog.com/page/'
page_number = 1
all_titles = []

while True:
    # Construct the URL for the current page
    url = f'{base_url}{page_number}'
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')

    # Find all article titles on the current page
    titles = soup.find_all('h2', class_='article-title')
    if not titles:
        break  # Exit the loop if no titles are found (end of pagination)

    # Extract and store the titles
    for title in titles:
        all_titles.append(title.get_text())

    # Move to the next page
    page_number += 1

# Print all collected titles
for title in all_titles:
    print(title)
ログイン後にコピー

ネストされたデータの抽出

抽出する必要があるデータが複数のタグ層内にネストされている場合があります。ネストされたデータ抽出を処理する方法は次のとおりです。

  1. 親タグに移動します: ネストされたデータを含む親タグを見つけます。
  2. ネストされたタグの抽出: 各親タグ内で、ネストされたタグを検索して抽出します。
  3. ネストされたタグを反復処理します: ネストされたタグを反復処理して、必要な情報を抽出します。
import requests
from bs4 import BeautifulSoup

url = 'https://example-blog.com/post/123'
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')

# Find the comments section
comments_section = soup.find('div', class_='comments')

# Extract individual comments
comments = comments_section.find_all('div', class_='comment')

for comment in comments:
    # Extract author and content from each comment
    author = comment.find('span', class_='author').get_text()
    content = comment.find('p', class_='content').get_text()
    print(f'Author: {author}\nContent: {content}\n')

ログイン後にコピー

AJAXリクエストの処理

最近の Web サイトの多くは AJAX を使用してデータを動的に読み込みます。 AJAX を処理するには、ブラウザ開発者ツールを使用してネットワーク リクエストを監視し、スクレイパーでそれらのリクエストを複製するなど、さまざまなテクニックが必要です。

import requests
from bs4 import BeautifulSoup

# URL to the API endpoint providing the AJAX data
ajax_url = 'https://example.com/api/data?page=1'
response = requests.get(ajax_url)
data = response.json()

# Extract and print data from the JSON response
for item in data['results']:
    print(item['field1'], item['field2'])

ログイン後にコピー

Webスクレイピングのリスク

Web スクレイピングでは、法的、技術的、倫理的なリスクを慎重に検討する必要があります。適切な安全対策を実装することで、これらのリスクを軽減し、責任を持って効果的に Web スクレイピングを実行できます。

  • 利用規約違反: 多くの Web サイトでは、利用規約 (ToS) でスクレイピングを明示的に禁止しています。これらの規約に違反すると、法的措置につながる可能性があります。
  • 知的財産の問題: 許可なくコンテンツをスクレイピングすると、知的財産権が侵害され、法的紛争につながる可能性があります。
  • IP ブロック: Web サイトは、スクレイピング動作を示す IP アドレスを検出してブロックする場合があります。
  • アカウントの禁止: ユーザー認証が必要な Web サイトでスクレイピングが実行された場合、スクレイピングに使用されたアカウントが禁止される可能性があります。

Beautiful Soup は、HTML および XML ドキュメントをナビゲートおよび検索するための使いやすいインターフェイスを提供することで、Web スクレイピングのプロセスを簡素化する強力なライブラリです。さまざまな解析タスクを処理できるため、Web からデータを抽出したい人にとって不可欠なツールになります。

以上がBeautiful Soup を使用してパブリック Web からデータを抽出する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングのためのPython:詳細な外観 科学コンピューティングのためのPython:詳細な外観 Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発用のPython:主要なアプリケーション Web開発用のPython:主要なアプリケーション Apr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

See all articles