ホームページ テクノロジー周辺機器 AI 1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

Aug 09, 2024 pm 07:40 PM
理論

1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

Editor |. Carrot Skin

Dalam beberapa tahun kebelakangan ini, kemajuan besar telah dicapai dalam pembangunan medan daya pembelajaran mesin (MLFF) berdasarkan pengiraan rujukan ab initio. Walaupun ralat ujian rendah dicapai, kebolehpercayaan MLFF dalam simulasi dinamik molekul (MD) menghadapi penelitian yang semakin meningkat disebabkan kebimbangan tentang ketidakstabilan terhadap skala masa simulasi yang lebih lama.

Penyelidikan telah menunjukkan potensi hubungan antara keteguhan kepada ketidaktepatan terkumpul dan penggunaan perwakilan setara dalam MLFF, tetapi kos pengiraan yang dikaitkan dengan perwakilan ini mungkin mengehadkan kelebihan ini dalam amalan.

Untuk menyelesaikan masalah ini, penyelidik dari Google DeepMind dan TU Berlin mencadangkan seni bina transformer yang dipanggil SO3krates, yang menggabungkan perwakilan setara jarang (pembolehubah Euclidean) dengan invarian pemisahan dan setara Ia menggabungkan mekanisme perhatian kendiri dengan maklumat berubah-ubah, menghapuskan keperluan untuk produk tensor yang mahal.

SO3krates mencapai gabungan unik ketepatan, kestabilan dan kelajuan, membolehkan analisis mendalam sifat kuantum jirim dalam tempoh masa yang lama dan skala sistem.

Penyelidikan itu bertajuk "Pengubah Euclidean untuk medan daya dipelajari mesin yang pantas dan stabil" dan diterbitkan dalam "Komunikasi Alam Semulajadi" pada 6 Ogos 2024.

1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

Latar Belakang dan Cabaran

Simulasi dinamik molekul (MD) boleh mendedahkan evolusi sistem daripada interaksi mikroskopik kepada sifat makroskopik melalui simulasi jangka panjang, dan ketepatan ramalannya bergantung pada interaksi interatomik yang mendorong ketepatan daya. Secara tradisinya, daya ini telah diperoleh daripada medan daya anggaran (FF) atau kaedah struktur elektronik ab initio yang kompleks secara komputasi.

Dalam beberapa tahun kebelakangan ini, model tenaga berpotensi pembelajaran mesin (ML) telah menyediakan kaedah ramalan yang lebih fleksibel dengan mengeksploitasi pergantungan statistik sistem molekul.

Walau bagaimanapun, kajian telah menunjukkan bahawa ralat ujian model ML pada set data penanda aras berkorelasi lemah dengan prestasi dalam simulasi MD jangka panjang.

Untuk meningkatkan prestasi ekstrapolasi, seni bina kompleks seperti rangkaian neural penghantaran mesej (MPNN) telah dibangunkan, terutamanya MPNN setara, yang menangkap maklumat arah antara atom dengan memperkenalkan produk tensor untuk meningkatkan kebolehpindahan data.

Dalam seni bina setara SO(3), lilitan dilakukan pada kumpulan putaran SO(3) berdasarkan harmonik sfera. Dengan menetapkan darjah maksimum 1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法 harmonik sfera dalam seni bina, pertumbuhan eksponen ruang fungsi yang berkaitan boleh dielakkan.

Para saintis telah membuktikan bahawa susunan maksimum berkait rapat dengan ketepatan, kecekapan data, dan berkaitan dengan kebolehpercayaan model dalam simulasi MD. Walau bagaimanapun, skala lilitan SO(3) 1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法, yang boleh meningkatkan masa ramalan setiap konformasi sehingga dua tertib magnitud berbanding model invarian.

Ini membawa kepada situasi di mana kompromi mesti dibuat antara ketepatan, kestabilan dan kelajuan, dan juga boleh menimbulkan masalah praktikal yang ketara. Isu ini mesti ditangani sebelum model ini boleh berguna dalam misi penerokaan berdaya tinggi atau berasaskan luas.

Kaedah baharu dengan prestasi hebat

Pasukan penyelidik Google DeepMind dan Universiti Teknikal Berlin menggunakan ini sebagai motivasi untuk mencadangkan mekanisme perhatian diri Euclidean, menggunakan arah relatif penapis kejiranan atom dan bukannya SO(3 ) konvolusi, dengan itu mewakili interaksi atom tanpa produk tensor yang mahal kaedahnya dipanggil SO3krates.

1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

Ilustrasi: seni bina SO3krates dan blok bangunan. (Sumber: kertas)

Penyelesaian ini dibina berdasarkan kemajuan terkini dalam reka bentuk seni bina rangkaian saraf dan pembelajaran mendalam geometri. SO3krates menggunakan perwakilan jarang untuk geometri molekul dan mengehadkan unjuran semua tindak balas lilitan kepada komponen invarian yang paling relevan bagi fungsi asas setara.

1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

Ilustrasi: Pembelajaran invarian. (Sumber: kertas)

Disebabkan keortogonan harmonik sfera, unjuran ini sepadan dengan surih tensor produk, yang boleh diwakili oleh produk dalam berskala linear. Ini boleh diperluaskan dengan cekap kepada perwakilan setara peringkat tinggi tanpa mengorbankan kelajuan pengiraan atau kos memori.

Ramalan daya diperoleh daripada kecerunan model tenaga invarian yang terhasil, yang mewakili pelinearisasi sekeping bagi setara semula jadi. Sepanjang proses, mekanisme perhatian kendiri digunakan untuk memisahkan elemen asas invarian dan setara dalam model.

Pasukan membandingkan kestabilan dan kelajuan model SO3krates dengan model ML terkini dan mendapati penyelesaian itu mengatasi batasan MLFF setara semasa tanpa menjejaskan kelebihannya.

Formula matematik yang dicadangkan oleh penyelidik dapat merealisasikan seni bina setara yang cekap, dengan itu mencapai simulasi MD yang boleh dipercayai dan stabil berbanding dengan MPNN setara dengan kestabilan dan ketepatan yang setanding, kelajuannya boleh ditingkatkan sebanyak kira-kira 30 kali ganda.

Untuk membuktikannya, penyelidik menjalankan simulasi MD berskala nanosaat yang tepat bagi struktur supramolekul dalam beberapa jam sahaja, membolehkan mereka mengira julat daripada peptida kecil dengan 42 atom kepada peptida dengan 370 atom transformasi Fourier fungsi autokorelasi struktur berstruktur nano.

1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

Grafik: Gambaran keseluruhan hasil. (Sumber: Kertas)

Para penyelidik seterusnya menggunakan model ini untuk meneroka topologi PES asid docosahexaenoic (DHA) dan Ac-Ala3-NHMe dengan mengkaji minima 10k menggunakan algoritma lompat minimum.

Kajian sedemikian memerlukan kira-kira 30M penilaian FF yang dilakukan pada suhu antara beberapa ratus K dan 1200 K. Menggunakan kaedah DFT, analisis ini memerlukan lebih daripada satu tahun masa pengiraan. MLFF setara sedia ada dengan ketepatan ramalan yang serupa akan mengambil masa lebih daripada sebulan untuk dijalankan untuk menyelesaikan analisis sedemikian.

Sebagai perbandingan, pasukan itu dapat menyelesaikan simulasi dalam masa 2.5 hari sahaja, membolehkan anda meneroka ratusan ribu minima PES pada skala masa yang realistik.

Selain itu, SO3krates dapat mengesan konformasi minimum yang sah secara fizikal yang tidak termasuk dalam data latihan. Keupayaan untuk mengekstrapolasi kepada bahagian PES yang tidak diketahui adalah penting untuk menskalakan MLFF kepada struktur besar, kerana data rujukan ab initio yang tersedia hanya meliputi subkawasan struktur yang kaya secara konformasi.

Pasukan juga mengkaji kesan melumpuhkan sifat varians yang sama dalam seni bina rangkaian untuk mendapatkan pemahaman yang lebih mendalam tentang kesannya terhadap sifat model dan kebolehpercayaannya dalam simulasi MD.

Para penyelidik mendapati bahawa kesetaraan berkaitan dengan kestabilan simulasi MD yang terhasil dan kelakuan ekstrapolasi kepada suhu yang lebih tinggi. Ia boleh ditunjukkan bahawa walaupun anggaran ralat ujian adalah sama secara purata, kesetaraan mengurangkan penyebaran taburan ralat.

1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

Ilustrasi: kecekapan pengiraan dan kestabilan MD. (Sumber: kertas)

Oleh itu, penggunaan maklumat arah melalui perwakilan setara adalah serupa dengan semangat teori ML klasik, di mana pemetaan ke dimensi yang lebih tinggi boleh menghasilkan ruang ciri yang lebih kaya yang lebih mudah untuk diparameterkan.

Penyelidikan Masa Depan

Dalam satu siri kajian terkini, kaedah yang bertujuan untuk mengurangkan kerumitan pengiraan lilitan SO(3) telah dicadangkan. Mereka boleh berfungsi sebagai pengganti untuk lilitan SO(3) penuh, dan kaedah yang dibentangkan dalam artikel ini boleh mengelakkan sepenuhnya penggunaan lilitan SO(3) yang mahal dalam paradigma penghantaran mesej.

Keputusan ini semua menunjukkan bahawa pengoptimuman interaksi setara ialah bidang penyelidikan aktif yang belum matang sepenuhnya dan mungkin menyediakan ruang untuk penambahbaikan selanjutnya.

1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法

Ilustrasi: Simulasi MD jangka panjang yang teguh dan ekstrapolasi kepada biomolekul yang lebih besar. (Sumber: kertas)

Walaupun kerja pasukan memungkinkan untuk mencapai skala masa simulasi lanjutan yang stabil menggunakan paradigma pemodelan MLFF moden, pengoptimuman masa hadapan masih diperlukan untuk membawa kebolehgunaan MLFF lebih dekat kepada FF klasik tradisional.

Pada masa ini, pelbagai jalan yang menjanjikan telah muncul ke arah ini: Dalam reka bentuk semasa, EV ditakrifkan semata-mata dari segi interaksi dua badan. Ketepatan boleh dipertingkatkan lagi dengan memasukkan pengembangan kelompok atom ke dalam langkah MP. Pada masa yang sama, ini boleh membantu mengurangkan bilangan langkah MP dan dengan itu kerumitan pengiraan model.

Satu lagi isu yang masih belum dibincangkan ialah pengendalian kesan global yang betul. Dengan menggunakan anggaran peringkat rendah, penjumlahan Ewald yang boleh dilatih, atau dengan mempelajari pembetulan jarak jauh dengan cara yang diilhamkan secara fizikal. Jenis pendekatan yang terakhir amat penting apabila ekstrapolasi kepada sistem yang lebih besar diperlukan.

Walaupun model setara boleh meningkatkan ekstrapolasi interaksi tempatan, ini tidak terpakai pada interaksi di luar skala panjang yang terdapat dalam data latihan atau di luar potongan efektif model.

Memandangkan kaedah di atas bergantung pada sifat tempatan seperti cas separa, elektronegativiti atau volum Hirshfield, kaedah ini boleh disepadukan dengan lancar ke dalam seni bina pasukan dengan mempelajari deskriptor tempatan yang sepadan dalam cabang ciri invarian dalam kaedah SO3krates.

Oleh itu, kerja masa hadapan akan menumpukan pada menggabungkan pengembangan banyak badan, kesan global dan interaksi jarak jauh ke dalam formalisme EV, dan bertujuan untuk meningkatkan lagi kecekapan pengiraan dan akhirnya menjangkau skala masa MD dengan ketepatan yang tinggi.

Pautan kertas: https://www.nature.com/articles/s41467-024-50620-6

Kandungan berkaitan: https://phys.org/news/2024-08-faster-coupling- ai-fundamental-physics.html


以上が1 年間の MD 計算を 2.5 日で完了しますか? DeepMind チームのユークリッド変換に基づく新しい計算方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

「Defect Spectrum」は、従来の欠陥検出の限界を打ち破り、超高精度かつ豊富なセマンティックな産業用欠陥検出を初めて実現します。 「Defect Spectrum」は、従来の欠陥検出の限界を打ち破り、超高精度かつ豊富なセマンティックな産業用欠陥検出を初めて実現します。 Jul 26, 2024 pm 05:38 PM

現代の製造において、正確な欠陥検出は製品の品​​質を確保するための鍵であるだけでなく、生産効率を向上させるための核心でもあります。ただし、既存の欠陥検出データセットには、実際のアプリケーションに必要な精度や意味論的な豊富さが欠けていることが多く、その結果、モデルが特定の欠陥カテゴリや位置を識別できなくなります。この問題を解決するために、広州香港科技大学と Simou Technology で構成されるトップの研究チームは、産業欠陥に関する詳細かつ意味的に豊富な大規模なアノテーションを提供する「DefectSpectrum」データセットを革新的に開発しました。表 1 に示すように、他の産業データ セットと比較して、「DefectSpectrum」データ セットは最も多くの欠陥注釈 (5438 個の欠陥サンプル) と最も詳細な欠陥分類 (125 個の欠陥カテゴリ) を提供します。

結晶相問題を解決するための数百万の結晶データを使用したトレーニング、深層学習手法 PhAI が Science 誌に掲載 結晶相問題を解決するための数百万の結晶データを使用したトレーニング、深層学習手法 PhAI が Science 誌に掲載 Aug 08, 2024 pm 09:22 PM

編集者 |KX 今日に至るまで、単純な金属から大きな膜タンパク質に至るまで、結晶学によって決定される構造の詳細と精度は、他のどの方法にも匹敵しません。しかし、最大の課題、いわゆる位相問題は、実験的に決定された振幅から位相情報を取得することのままです。デンマークのコペンハーゲン大学の研究者らは、結晶相の問題を解決するための PhAI と呼ばれる深層学習手法を開発しました。数百万の人工結晶構造とそれに対応する合成回折データを使用して訓練された深層学習ニューラル ネットワークは、正確な電子密度マップを生成できます。この研究では、この深層学習ベースの非経験的構造解法は、従来の非経験的計算法とは異なり、わずか 2 オングストロームの解像度で位相問題を解決できることが示されています。これは、原子解像度で利用可能なデータのわずか 10% ~ 20% に相当します。

NVIDIA 対話モデル ChatQA はバージョン 2.0 に進化し、コンテキストの長さは 128K と記載されています NVIDIA 対話モデル ChatQA はバージョン 2.0 に進化し、コンテキストの長さは 128K と記載されています Jul 26, 2024 am 08:40 AM

オープンな LLM コミュニティは百花繚乱の時代です Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1 などがご覧いただけます。優秀なパフォーマーモデル。しかし、GPT-4-Turboに代表される独自の大型モデルと比較すると、オープンモデルには依然として多くの分野で大きなギャップがあります。一般的なモデルに加えて、プログラミングと数学用の DeepSeek-Coder-V2 や視覚言語タスク用の InternVL など、主要な領域に特化したいくつかのオープン モデルが開発されています。

Google AI が IMO 数学オリンピック銀メダルを獲得、数理推論モデル AlphaProof が発売、強化学習が復活 Google AI が IMO 数学オリンピック銀メダルを獲得、数理推論モデル AlphaProof が発売、強化学習が復活 Jul 26, 2024 pm 02:40 PM

AI にとって、数学オリンピックはもはや問題ではありません。木曜日、Google DeepMind の人工知能は、AI を使用して今年の国際数学オリンピック IMO の本当の問題を解決するという偉業を達成し、金メダル獲得まであと一歩のところまで迫りました。先週終了したばかりの IMO コンテストでは、代数、組合せ論、幾何学、数論を含む 6 つの問題が出題されました。 Googleが提案したハイブリッドAIシステムは4問正解で28点を獲得し、銀メダルレベルに達した。今月初め、UCLA 終身教授のテレンス・タオ氏が、100 万ドルの賞金をかけて AI 数学オリンピック (AIMO Progress Award) を宣伝したばかりだったが、予想外なことに、AI の問題解決のレベルは 7 月以前にこのレベルまで向上していた。 IMO に関する質問を同時に行うのが最も難しいのは、最も歴史が長く、規模が最も大きく、最も否定的な IMO です。

PRO | なぜ MoE に基づく大規模モデルがより注目に値するのでしょうか? PRO | なぜ MoE に基づく大規模モデルがより注目に値するのでしょうか? Aug 07, 2024 pm 07:08 PM

2023 年には、AI のほぼすべての分野が前例のない速度で進化しています。同時に、AI は身体化されたインテリジェンスや自動運転などの主要な分野の技術的限界を押し広げています。マルチモーダルの流れのもと、AI大型モデルの主流アーキテクチャとしてのTransformerの状況は揺るがされるだろうか? MoE (専門家混合) アーキテクチャに基づく大規模モデルの検討が業界の新しいトレンドになっているのはなぜですか?ラージ ビジョン モデル (LVM) は、一般的な視覚における新たなブレークスルーとなる可能性がありますか? ...過去 6 か月間にリリースされたこのサイトの 2023 PRO メンバー ニュースレターから、上記の分野の技術トレンドと業界の変化を詳細に分析し、新しい分野での目標を達成するのに役立つ 10 の特別な解釈を選択しました。準備してください。この解釈は 2023 年の Week50 からのものです

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

Transformer に基づく浙江大学の化学逆合成予測モデルは、Nature サブジャーナルで 60.8% に達しました。 Transformer に基づく浙江大学の化学逆合成予測モデルは、Nature サブジャーナルで 60.8% に達しました。 Aug 06, 2024 pm 07:34 PM

編集者 | KX 逆合成は創薬や有機合成において重要なタスクであり、そのプロセスを高速化するために AI の使用が増えています。既存の AI 手法はパフォーマンスが不十分で、多様性が限られています。実際には、化学反応は多くの場合、反応物と生成物の間にかなりの重複を伴​​う局所的な分子変化を引き起こします。これに触発されて、浙江大学のHou Tingjun氏のチームは、単一ステップの逆合成予測を分子列編集タスクとして再定義し、標的分子列を反復的に改良して前駆体化合物を生成することを提案した。そして、高品質かつ多様な予測を実現できる編集ベースの逆合成モデルEditRetroを提案する。広範な実験により、このモデルが標準ベンチマーク データ セット USPTO-50 K で優れたパフォーマンスを達成し、トップ 1 の精度が 60.8% であることが示されました。

自然の視点: 医療における人工知能のテストは混乱に陥っています。何をすべきでしょうか? 自然の視点: 医療における人工知能のテストは混乱に陥っています。何をすべきでしょうか? Aug 22, 2024 pm 04:37 PM

編集者 | ScienceAI 限られた臨床データに基づいて、何百もの医療アルゴリズムが承認されています。科学者たちは、誰がツールをテストすべきか、そしてどのようにテストするのが最善かについて議論しています。デビン シン氏は、救急治療室で小児患者が治療を長時間待っている間に心停止に陥るのを目撃し、待ち時間を短縮するための AI の応用を模索するようになりました。 SickKids 緊急治療室からのトリアージ データを使用して、Singh 氏らは潜在的な診断を提供し、検査を推奨する一連の AI モデルを構築しました。ある研究では、これらのモデルにより医師の診察が 22.3% 短縮され、医療検査が必要な患者 1 人あたりの結果の処理が 3 時間近く高速化できることが示されました。ただし、研究における人工知能アルゴリズムの成功は、これを証明するだけです。

See all articles