特徴量エンジニアリング: 究極のガイド
特徴量エンジニアリング
特徴量エンジニアリングは、生データを、特徴として知られるいくつかの属性を持つより効果的な入力セットに変換する機械学習の前処理ステップとして説明されます。
機械学習モデルの成功は、モデルのトレーニングに使用される機能の品質に大きく依存します。特徴エンジニアリングには、既存の特徴を組み合わせたり変換したりして新しい特徴を作成できる一連の手法が含まれます。これらの手法は、データ内の最も重要なパターンと関係を強調するのに役立ち、これにより、機械学習モデルがデータからより効果的に学習するのに役立ちます。
特徴量エンジニアリングの主要なテクニック
特徴量エンジニアリングは 2 つの主要なステップに分類できます。
データの前処理
ビジネス理解(ドメイン知識)
データの前処理
これは通常、特徴エンジニアリングのステップであり、現在の機械語のニーズに合わせてデータを準備および操作することが含まれます。ここではさまざまなテクニックが使用されています;
欠損値の処理では、代入 (平均、中央値、最頻値) などの手法や、欠損値をネイティブに処理するアルゴリズムを使用できます。
ワンホット エンコーディング、ラベル エンコーディング、ターゲット エンコーディングなどの一般的な方法を使用して、ほとんどのアルゴリズムでカテゴリ データを数値形式に変換する必要があるカテゴリ変数のエンコーディング。
スケーリングと正規化。スケーリング機能は、モデルに均等に寄与することを保証します。手法には標準化 (Z スコア)
が含まれます
既存の機能を組み合わせて新しい機能を作成し、データとの複雑な関係を作成する機能の相互作用と機能の作成
PCA (主成分分析) や t-SNE などの手法により、最も重要な情報を保持しながら特徴の数を削減する次元削減。
EDA は特徴エンジニアリングでも利用でき、通常は特徴エンジニアリングの前身となります。
ドメイン知識
ドメイン知識とは、特定の分野または業界における理解と専門知識を指します。特徴エンジニアリングでは、洞察を適用し、データのコンテキストと関係を理解して、モデルのパフォーマンスを向上させる意味のある特徴を作成することが含まれます。
どの機能が当面の問題に関連しているかを特定し、データの関係を理解するのに役立ちます。
以上が特徴量エンジニアリング: 究極のガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
