ホームページ バックエンド開発 Python チュートリアル Scrapy の使用: Web スクレイピングの簡単なガイド

Scrapy の使用: Web スクレイピングの簡単なガイド

Aug 18, 2024 am 06:12 AM

Using Scrapy: A Simple Guide to Web Scraping

‌Scrapy は、Python で開発された高速で高レベルの Web クローリング フレームワークで、Web サイトをクロールし、ページから構造化データを抽出するために使用されます。幅広い用途があり、データマイニング、モニタリング、自動テストに使用できます。 ‌

スクレイピーの概要

Scrapy フレームワークは、スケジューラー、ダウンローダー、クローラー、エンティティ パイプライン、Scrapy エンジンの 5 つの主要コンポーネントで構成されています。 ‌
その中で、スケジューラーは次にクロールする URL を決定し、ダウンローダーはネットワーク リソースを高速にダウンロードするために使用され、クローラーは特定の Web ページから必要な情報を抽出するために使用され、エンティティ パイプラインはクローラーによって抽出されたデータを処理します。 、Scrapy エンジンはシステムのすべてのコンポーネントのデータ フローを制御します。 ‌
Scrapy がよく使われる理由は、誰でも必要に応じて簡単に変更でき、さまざまな種類の Web スクレイピングの基本クラスを提供するフレームワークであるためです。

Web ページをクロールするための Scrapy の利点

Web ページをクロールするための Scrapy の利点は主に次のとおりです: ‌
1‌.高効率‌: Scrapy は非同期処理と同時リクエストを使用するため、大規模なクローリング タスクを効率的に処理し、Web クローリングの効率を向上させることができます。 ‌
2.柔軟性‌: Scrapy は豊富なコンポーネントとプラグインメカニズムのセットを提供しており、ユーザーはニーズに応じてそれらをカスタマイズおよび拡張して、さまざまな Web クローリングのニーズを満たすことができます。
3.安定性‌: Scrapy は耐障害性と安定性に優れており、複雑で変化するネットワーク環境に対処できます。 ‌
4.豊富な機能‌: Scrapy は、HTML、XML、JSON などを含む複数のデータ形式の解析と処理をサポートし、自動処理、データ抽出、データ保存などの機能を提供します。 ‌
‌5.強力なスケーラビリティ‌: Scrapy は分散クロールをサポートしており、複数のクローラー ノードを通じて同時にデータをクロールおよび処理して、クロールの効率を向上させることができます。

Scrapy で Web ページをスクレイピングするための基本的な手順

Scrapy は、Web サイトをクロールし、ページから構造化データを抽出するために使用される、高速かつ高度な Web クローリングおよび Web スクレイピング フレームワークです。 ‌Scrapy を Web スクレイピングに使用する基本的な手順は次のとおりです:‌

1.Scrapyをインストールする‌

まず、Scrapy がインストールされていることを確認します。まだインストールされていない場合は、pip:‌
を通じてインストールできます。 pip installscrapy

2. Scrapyプロジェクトを作成する

scrapy startproject コマンドを使用して、新しい Scrapy プロジェクトを作成します。たとえば、myproject:
という名前のプロジェクトを作成します。 スクレイピースタートプロジェクトmyproject

3. 項目の定義

クロールされたデータを保存するアイテムをプロジェクトに定義します。たとえば、myproject/myproject/items.py:
で項目を定義します。

import scrapy

class MyprojectItem(scrapy.Item):
    title = scrapy.Field()
    link = scrapy.Field()
    desc = scrapy.Field()
ログイン後にコピー

4. スパイダーを書く

プロジェクト内にスパイダーを作成して、クロールする Web サイトとそのクロール方法を定義します。たとえば、myproject/myproject/spiders ディレクトリに example.py という名前の Spider ファイルを作成します。

import scrapy
from myproject.items import MyprojectItem

class ExampleSpider(scrapy.Spider):
    name = 'example'
    allowed_domains = ['example.com']
    start_urls = ['http://example.com/']

    def parse(self, response):
        items = []
        for sel in response.xpath('//ul/li'):
            item = MyprojectItem()
            item['title'] = sel.xpath('a/text()').get()
            item['link'] = sel.xpath('a/@href').get()
            item['desc'] = sel.xpath('text()').get()
            items.append(item)
        return items
ログイン後にコピー

5. スパイダーを走らせる

スクレイピー クロール コマンドを使用してスパイダーを実行します。たとえば、上で作成した例の Spider を実行します。
スクレイピークロールの例

6. データの保存

クロールされたデータは、ファイルやデータベースに保存するなど、アイテム パイプラインを定義することで処理できます。

7. さらなる構成

ミドルウェア、ダウンローダー、ログなどのセットアップなど、必要に応じて Scrapy プロジェクトをさらに構成できます。

これらは、Scrapy を使用して Web サイトをクロールするための基本的な手順です。特定のニーズに応じて、追加の構成と最適化を実行する必要がある場合があります。

動的ユーザーエージェントを使用するように Scrapy を設定するにはどうすればよいですか?

動的ユーザー エージェントは、Web サイトによってクローラーが特定されるのを防ぐ効果的な戦略です。 Scrapy では、動的なユーザーエージェントをさまざまな方法で設定できます: ‌ ‌

  • Spider クラスにcustom_settings 属性を追加します。 ‌ この属性は、カスタム Scrapy 構成を設定するために使用される辞書です。 ‌custom_settings ディクショナリに「USER_AGENT」キーを追加し、対応する User-Agent 値を設定します。 ‌ ‌ ‌

  • fake_useragent ライブラリを使用します。 ‌ このライブラリには、ランダムに置き換えることができる多数の組み込みユーザー エージェントが含まれています。 ‌ fake_useragent パッケージをインストールした後、Scrapy の設定構成ファイル内のライブラリをインポートして使用し、ランダムなユーザー エージェントを生成します。 ‌ ‌ ‌

  • ランダムなユーザー エージェント ミドルウェアを実装する: ‌ fake_useragent ライブラリを使用して各リクエストに異なるユーザー エージェントを割り当てるミドルウェアを作成します。 ‌ ‌ ‌
    これらの方法により、通常のユーザーの行動を効果的にシミュレートし、Web サイトによってクローラーとして識別されるリスクを軽減できます。 ‌ ‌

Web クローリングに Scrapy を使用するときにプロキシを設定する必要があるのはなぜですか?

Web スクレイピングに Scrapy フレームワークを使用する場合、プロキシを設定することが非常に必要です。主な理由は次のとおりです。

  • IP ブロックを避ける: クローラーが Web サイトにアクセスするときに、元の IP アドレスが直接使用されると、Web サイトによって簡単に識別され、ブロックされます。プロキシを使用すると、実際の IP アドレスを隠すことができるため、ブロックを回避し、クローラーの ID を保護できます。 ‌

  • アクセス制限の突破: 一部の Web サイトではアクセス制限が設定されています。プロキシを使用すると、これらの制限を突破して、ターゲット Web サイト上のデータを自由に取得できます。 ‌

  • クローラ効率の向上: 大量のクローリング データが必要な一部のシナリオでは、プロキシを使用すると IP アドレスのブロックを効果的に回避できるため、クローラ プログラムの通常の動作が保証され、クローラの効率が向上します。 ‌
    要約すると、Scrapy フレームワークでデータをより適切に収集するには、プロキシを設定することが非常に重要です。

Scrapyでプロキシサーバーを設定するにはどうすればよいですか?

Scrapy でプロキシを設定するには、プロジェクトの settings.py ファイルを変更します。 ‌具体的な手順は次のとおりです:‌

  1. プロキシ サーバーを準備します。まず、信頼できるプロキシ サービス プロバイダーから IP を取得し、ファイルに保存するか、プロキシの API を使用する必要があります。 ‌

  2. プロキシを有効にする:‌settings.py ファイルで PROXY_ENABLED = True を設定して、プロキシを有効にします。 ‌

  3. プロキシ IP とポートを設定します‌:PROXY 変数を設定することで、プロキシとポートを指定できます。たとえば、PROXY = 'http://your_proxy_ip:port' となります。 ‌

  4. ダウンローダーミドルウェアの構成:‌プロキシ設定を確実に有効にするには、settings.py ファイルのDOWNLOADER_MIDDLEWARES 構成でプロキシ関連のミドルウェア設定を追加または変更する必要があります。 ‌

この記事を理解することで、Scrapy を使用して Web ページをクロールする方法を学び、ユーザー エージェントとエージェントを動的に設定することで Web クローリング中に発生する問題を回避することができます。

以上がScrapy の使用: Web スクレイピングの簡単なガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:比較されたアプリケーションとユースケース Python vs. C:比較されたアプリケーションとユースケース Apr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間でどのくらいのPythonを学ぶことができますか? 2時間でどのくらいのPythonを学ぶことができますか? Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles