ホームページ バックエンド開発 Python チュートリアル attrsをもっと使用する必要がある理由

attrsをもっと使用する必要がある理由

Aug 21, 2024 am 06:14 AM

Why should you use attrs more

導入

Python の attrs ライブラリは、クラスの作成を簡素化し、定型コードを削減したいと考えている開発者にとって状況を大きく変えるものです。このライブラリは NASA からも信頼されています。
2015 年に Hynek Schlawack によって作成された attrs は、特別なメソッドを自動的に生成し、クラスを定義するクリーンで宣言的な方法を提供する機能により、すぐに Python 開発者の間で人気のツールになりました。
dataclasses は属性のサブセットの一種です。

attrs が役立つ理由:

  • 定型コードを削減します
  • コードの可読性と保守性を向上させます
  • データの検証と変換のための強力な機能を提供します
  • 最適化された実装によりパフォーマンスを向上させます

2. attrs の使用を開始する

インストール:
attrs を使い始めるには、pip:
を使用してインストールできます。

pip install attrs
ログイン後にコピー

基本的な使用法:
以下は、attrs を使用してクラスを定義する方法の簡単な例です:

import attr

@attr.s
class Person:
    name = attr.ib()
    age = attr.ib()

# Creating an instance
person = Person("Alice", 30)
print(person)  # Person(name='Alice', age=30)
ログイン後にコピー

3. attrs の主要な機能

a.メソッドの自動生成:

attrs は、クラスの initrepr、および eq メソッドを自動的に生成します。

@attr.s
class Book:
    title = attr.ib()
    author = attr.ib()
    year = attr.ib()

book1 = Book("1984", "George Orwell", 1949)
book2 = Book("1984", "George Orwell", 1949)

print(book1)  # Book(title='1984', author='George Orwell', year=1949)
print(book1 == book2)  # True
ログイン後にコピー

b.タイプとデフォルト値を含む属性定義:

import attr
from typing import List

@attr.s
class Library:
    name = attr.ib(type=str)
    books = attr.ib(type=List[str], default=attr.Factory(list))
    capacity = attr.ib(type=int, default=1000)

library = Library("City Library")
print(library)  # Library(name='City Library', books=[], capacity=1000)
ログイン後にコピー

c.バリデーターとコンバーター:

import attr

def must_be_positive(instance, attribute, value):
    if value <= 0:
        raise ValueError("Value must be positive")

@attr.s
class Product:
    name = attr.ib()
    price = attr.ib(converter=float, validator=[attr.validators.instance_of(float), must_be_positive])

product = Product("Book", "29.99")
print(product)  # Product(name='Book', price=29.99)

try:
    Product("Invalid", -10)
except ValueError as e:
    print(e)  # Value must be positive
ログイン後にコピー

4. 高度な使い方

a.属性の動作をカスタマイズする:

import attr

@attr.s
class User:
    username = attr.ib()
    _password = attr.ib(repr=False)  # Exclude from repr

    @property
    def password(self):
        return self._password

    @password.setter
    def password(self, value):
        self._password = hash(value)  # Simple hashing for demonstration

user = User("alice", "secret123")
print(user)  # User(username='alice')
ログイン後にコピー

b.凍結されたインスタンスとスロット:

@attr.s(frozen=True) # slots=True is the default
class Point:
    x = attr.ib()
    y = attr.ib()

point = Point(1, 2)
try:
    point.x = 3  # This will raise an AttributeError
except AttributeError as e:
    print(e)  # can't set attribute
ログイン後にコピー

c.ファクトリー関数と初期化後の処理:

import attr
import uuid

@attr.s
class Order:
    id = attr.ib(factory=uuid.uuid4)
    items = attr.ib(factory=list)
    total = attr.ib(init=False)

    def __attrs_post_init__(self):
        self.total = sum(item.price for item in self.items)

@attr.s
class Item:
    name = attr.ib()
    price = attr.ib(type=float)

order = Order(items=[Item("Book", 10.99), Item("Pen", 1.99)])
print(order)  # Order(id=UUID('...'), items=[Item(name='Book', price=10.99), Item(name='Pen', price=1.99)], total=12.98)
ログイン後にコピー

5. ベストプラクティスとよくある落とし穴

ベストプラクティス:

  • コードの読みやすさと IDE サポートを向上させるために型アノテーションを使用します
  • データの整合性のためにバリデータを活用する
  • 不変オブジェクトには凍結されたクラスを使用する
  • 自動メソッド生成を利用してコードの重複を削減します

よくある落とし穴:

  • クラスで @attr.s デコレータを使用するのを忘れています
  • 別個のメソッドである可能性がある複雑なバリデーターを過剰に使用する
  • ファクトリー関数の広範な使用によるパフォーマンスへの影響は考慮されていません

6. attrs と他のライブラリの比較

Library Features Performance Community
attrs Automatic method generation, attribute definition with types and default values, validators and converters Better performance than manual code Active community
pydantic Data validation and settings management, automatic method generation, attribute definition with types and default values, validators and converters Good performance Active community
dataclasses Built into Python 3.7+, making them more accessible Tied to the Python version Built-in Python library

attrs and dataclasses are faster than pydantic1.

Comparison with dataclasses:

  • attrs is more feature-rich and flexible
  • dataclasses are built into Python 3.7+, making them more accessible
  • attrs has better performance in most cases
  • dataclasses are tied to the Python version, while attrs as an external library can be used with any Python version.

Comparison with pydantic:

  • pydantic is focused on data validation and settings management
  • attrs is more general-purpose and integrates better with existing codebases
  • pydantic has built-in JSON serialization, while attrs requires additional libraries

When to choose attrs:

  • For complex class hierarchies with custom behaviors
  • When you need fine-grained control over attribute definitions
  • For projects that require Python 2 compatibility (though less relevant now)

7. Performance and Real-world Applications

Performance:
attrs generally offers better performance than manually written classes or other libraries due to its optimized implementations.

Real-world example:

from attr import define, Factory
from typing import List, Optional

@define
class Customer:
    id: int
    name: str
    email: str
    orders: List['Order'] = Factory(list)

@define
class Order:
    id: int
    customer_id: int
    total: float
    items: List['OrderItem'] = Factory(list)

@define
class OrderItem:
    id: int
    order_id: int
    product_id: int
    quantity: int
    price: float

@define
class Product:
    id: int
    name: str
    price: float
    description: Optional[str] = None

# Usage
customer = Customer(1, "Alice", "alice@example.com")
product = Product(1, "Book", 29.99, "A great book")
order_item = OrderItem(1, 1, 1, 2, product.price)
order = Order(1, customer.id, 59.98, [order_item])
customer.orders.append(order)

print(customer)
ログイン後にコピー

8. Conclusion and Call to Action

attrs is a powerful library that simplifies Python class definitions while providing robust features for data validation and manipulation. Its ability to reduce boilerplate code, improve readability, and enhance performance makes it an invaluable tool for Python developers.

Community resources:

  • GitHub repository: https://github.com/python-attrs/attrs
  • Documentation: https://www.attrs.org/
  • PyPI page: https://pypi.org/project/attrs/

Try attrs in your next project and experience its benefits firsthand. Share your experiences with the community and contribute to its ongoing development. Happy coding!


  1. https://stefan.sofa-rockers.org/2020/05/29/attrs-dataclasses-pydantic/ ↩

以上がattrsをもっと使用する必要がある理由の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

See all articles