Dalam dunia pembangunan yang pantas, integriti dan kebolehpercayaan data adalah yang terpenting. Pengesahan data yang mantap dan pengendalian data pengguna yang cekap boleh membuat perbezaan antara pengalaman yang lancar dan keadaan aplikasi yang tidak konsisten.
Petikan George Fuechsel di bawah meringkaskan maksud artikel ini.
“Sampah masuk, sampah keluar.” — George Fuechsel
Dalam artikel ini, kami akan menyelami pengesahan data dalam NestJS. Kami akan meneroka beberapa kes penggunaan kompleks pengesah kelas dan pengubah kelas untuk memastikan data sah dan diformat dengan betul. Sepanjang perjalanan, kami akan membincangkan amalan terbaik, beberapa teknik lanjutan dan perangkap biasa untuk membawa kemahiran anda ke peringkat seterusnya. Motif saya adalah untuk melengkapkan anda membina aplikasi yang lebih berdaya tahan dan kalis ralat dengan NestJS.
Semasa kita melalui perjalanan ini bersama-sama, perlu diingat bahawa kita tidak boleh mempercayai sebarang input yang diserahkan oleh pengguna atau pelanggan di luar aplikasi, tidak kira sama ada ia adalah sebahagian daripada perkhidmatan yang lebih besar (perkhidmatan mikro).
DTO ialah corak yang boleh kami manfaatkan untuk merangkum data dan memindahkannya ke lapisan aplikasi yang berbeza. Ia berguna untuk mengurus data yang mengalir masuk (permintaan) dan keluar (tindak balas) apl.
Seperti yang telah kami tetapkan, idea utama untuk menggunakan DTO adalah untuk memindahkan data dan oleh itu, data tidak boleh diubah selepas ia dibuat. Secara umum, DTO direka bentuk untuk tidak berubah, bermakna apabila ia dicipta sifatnya tidak boleh diubah suai. Beberapa faedah yang datang dengan ini termasuk tetapi tidak terhad kepada:
JavaScript tidak mempunyai jenis terbina dalam untuk mencipta jenis tidak berubah seperti yang kami ada rekod jenis dalam Java dan C#. Kami boleh mencapai gelagat yang serupa dengan menjadikan medan kami baca sahaja.
Kami akan bermula dengan projek pengurusan pengguna mini, yang akan merangkumi operasi CRUD asas untuk mengurus pengguna. Jika anda ingin meneroka kod sumber penuh, anda boleh klik di sini untuk mengakses projek di GitHub.
Pasang NestJS CLI
$ npm i -g @nestjs/cli $ nest new user-mgt
Pasang class-validator dan class-transformer
npm i --save class-validator class-transformer
Jana modul pengguna
$ nest g resource users ? What transport layer do you use? REST API ? Would you like to generate CRUD entry points? No
Buat folder DTO dan entiti kosong. Selepas segala-galanya, anda sepatutnya mempunyai struktur ini.
Mari mulakan dengan mencipta DTO yang diperlukan. Tutorial ini akan menumpukan pada dua tindakan sahaja, mencipta dan mengemas kini pengguna. Cipta dua fail dalam folder DTO
buat pengguna.dto.ts
export class UserCreateDto { public readonly name: string; public readonly email: string; public readonly password: string; public readonly age: number; public readonly dateOfBirth: Date; public readonly photos: string[]; }
kemas kini pengguna.dto.ts
import { PartialType } from '@nestjs/mapped-types'; import { UserCreateDto } from './user-create.dto'; export class UserUpdateDto extends PartialType(UserCreateDto) {}
UserUpdateDto melanjutkan UserCreateDto untuk mewarisi semua sifat, PartialType memastikan semua medan adalah pilihan yang membenarkan kemas kini separa. Ini menjimatkan masa kita jadi kita tidak perlu mengulanginya.
Mari kita pecahkan cara menambah pengesahan pada medan. Pengesah kelas memberi kami banyak penghias pengesahan yang telah dibuat yang mana kami boleh menggunakan peraturan ini pada DTO kami. Buat masa ini, kami akan menggunakan beberapa untuk mengesahkan UserCreateDto. klik di sini untuk senarai penuh.
import { IsString, IsEmail, IsInt, Min, Max, Length, IsDate, IsArray, ArrayNotEmpty, ValidateNested, IsUrl, } from 'class-validator'; import { Transform, Type } from 'class-transformer'; export class UserCreateDto { @IsString() @Length(2, 30, { message: 'Name must be between 2 and 30 characters' }) @Transform(({ value }) => value.trim()) public readonly name: string; @IsEmail({}, { message: 'Invalid email address' }) public readonly email: string; @IsString() @Length(8, 50, { message: 'Password must be between 8 and 50 characters' }) public readonly password: string; @IsInt() @Min(18, { message: 'Age must be at least 18' }) @Max(100, { message: 'Age must not exceed 100' }) public readonly age: number; @IsDate({ message: 'Invalid date format' }) @Type(() => Date) public readonly dateOfBirth: Date; @IsArray() @ValidateNested() @ArrayNotEmpty({ message: 'Photos array should not be empty' }) @IsString({ each: true, message: 'Each photo URL must be a string' }) @IsUrl({}, { each: true, message: 'Each photo must be a valid URL' }) public readonly photos: string[]; }
Saiz kelas ringkas kami telah berkembang, kami telah menganotasi medan dengan penghias daripada Pengesah-Kelas. Penghias ini menggunakan peraturan pengesahan pada medan. Anda mungkin mempunyai soalan tentang penghias jika anda baru mengetahui perkara ini. Sebagai contoh, apa yang mereka maksudkan? Mari pecahkan beberapa pengesah asas yang telah kami gunakan.
The UserCreateDto fields validator contains additional properties passed into it. These allow you to:
Unlike normal fields validating nested objects requires a bit of extra processing, class-transformer together with class-validator allows you to validate nested objects.
We did a little bit of nested validation in UserCreateDto when we validated the photos field.
@IsArray() @IsUrl({}, { each: true, message: 'Each photo must be a valid URL' }) public readonly photos: string[];
Photos are an array of strings. To validate the nested strings, we added ValidateNested() and { each: true } to ensure that, each link is a valid URL.
Let’s update photos a some-what complex structure. create a new file in DTO folder and name it user-photo.dto.ts
import { IsString, IsInt, Min, Max, IsUrl, Length } from 'class-validator'; export class UserPhotoDto { @IsString() @Length(2, 100, { message: 'Name must be between 2 and 100 characters' }) public readonly name: string; @IsInt() @Min(1, { message: 'Size must be at least 1 byte' }) @Max(5_000_000, { message: 'Size must not exceed 5MB' }) public readonly size: number; @IsUrl( { protocols: ['http', 'https'], require_protocol: true }, { message: 'Invalid URL format' }, ) public readonly url: string; }
Now let’s update the photos section of UserCreateDto
export class UserCreateDto { // Other fields @IsArray() @ArrayNotEmpty({ message: 'Photos array should not be empty' }) @ValidateNested({ each: true }) @Type(() => UserPhotoDto) public readonly photos: UserPhotoDto[]; }
The ValidateNested() decorator ensures that each element in the array is a valid photo object. The most important thing to be aware of when it comes to nested validation is that the nested object must be an instance of a class else ValidateNested() won’t know the target class for validation. This is where class-transformer comes in.
Class-transformer provides us with the @Type() decorator. Since Typescript doesn’t have good reflection capabilities yet, we use @Type(() => UserPhotoDto) to give an instance of the class.
We can also utilize the Type() decorator for basic data transformation in our DTO. The dateOfBirth field in UserCreateDto is transformed into a date object using @Type(() => Date).
For complex DTO fields transformation, the Tranform() decorator handles this perfectly. It allows you to access both the field value and the entire object being validated. Whether you’re converting data types, formatting strings, or applying custom logic, @Transform() gives you the control to return the exact version of the value that your application needs.
@Transform(({ value, obj }) => { // perform additional transformation return value; })
Most often, some fields need to be validated based on some business rules, we can use the ValidateIf() decorator, which allows you to apply validation to a field only if some condition is true. This is very useful if a field depends on other fields like multi-step forms.
Let’s update the UserPhotoDto to include an optional description field, which should only be validated if it is provided. If the description is present, it should be a string with a length between 10 and 200 characters.
export class UserPhotoDto { // Other fields @ValidateIf((o) => o.description !== undefined) @IsString({ message: 'Description must be a string' }) @Length(10, 200, { message: 'Description must be between 10 and 200 characters', }) public readonly description?: string; }
Before we dive into how NestJS handles validation errors, let’s first create simple handlers in the user.controller.ts. We need a basic route to handle user creation.
import { Body, Controller, Post } from '@nestjs/common'; import { UserCreateDto } from './dto/user-create.dto'; @Controller('users') export class UsersController { @Post() createUser(@Body() userCreateDto: UserCreateDto) { // delegating the creation to a service return { message: 'User created successfully!', user: userCreateDto, }; } }
Trying this endpoint on Postman with no payload gives us a successful response.
NestJS has a good integration with class-validator for data validation. Still, why wasn’t our request validated? To tell NestJS that we want to validate UserCreateDto we have to supply a pipe to the Body() decorator.
Pipes are flexible and powerful ways to transform and validate incoming data. Pipes are any class decorated with Injectable() and implement the PipeTransform interface. The usage of pipe we are interested is its ability to check that an incoming request meets a certain criteria or throw errors if otherwise.
The most common way to validate the UserCreateDto is to use the built-in ValidationPipe. This pipe validates rules in your DTO defined with class-validator
Now we pass a validation pipe to the Body() to validate the DTO
import { Body, Controller, Post, ValidationPipe } from '@nestjs/common'; import { UserCreateDto } from './dto/user-create.dto'; @Controller('users') export class UsersController { @Post() createUser(@Body(new ValidationPipe()) userCreateDto: UserCreateDto) { // delegating the creation to services return { message: 'User created successfully!', user: userCreateDto, }; } }
With this small change, we get the errors below if we try to create a user with no payload.
Awesome right :)
To ensure that all requests are validated across the entire application. We have to set up a global validation pipe so that we don’t have to pass validation pipe to every Body() decorator.
Update main.ts
import { NestFactory } from '@nestjs/core'; import { AppModule } from './app.module'; import { ValidationPipe } from '@nestjs/common'; async function bootstrap() { const app = await NestFactory.create(AppModule); app.useGlobalPipes( new ValidationPipe({ whitelist: true, transform: true, }), ); await app.listen(3000); } bootstrap();
The built-in validation pipe uses class-transformer and class-validator, we can pass validations options to be used by these underlying packages. whitelist: true automatically strips any properties that are not defined in the DTO.transform: true automatically transforms the payload into the appropriate types defined in your DTO.
ValidationPipe({ whitelist: true, transform: true, }),
With this, we can remove the pipe we passed to createUser endpoint and it will still be validated. Passing it to parameters helps us fine-tune the validation we need for specific endpoints.
@Post() createUser(@Body() userCreateDto: UserCreateDto) { // ... }
The default validation errors format is not bad, we get to see all the errors for the validations that failed, Some frontend developers will scream at you though for mixing all the errors, I have been there?. Another reason to separate it is when you want to display errors under the fields that failed on the UI.
For nested objects, we also need to retrieve all the errors recursively for a smooth experience. We can achieve this by passing a custom exceptionFactory method to format the errors.
Update main.ts
import { NestFactory } from '@nestjs/core'; import { AppModule } from './app.module'; import { BadRequestException, ValidationError, ValidationPipe, } from '@nestjs/common'; async function bootstrap() { const app = await NestFactory.create(AppModule); app.useGlobalPipes( new ValidationPipe({ transform: true, whitelist: true, exceptionFactory: (validationErrors: ValidationError[] = []) => { const getPrettyClassValidatorErrors = ( validationErrors: ValidationError[], parentProperty = '', ): Array<{ property: string; errors: string[] }> => { const errors = []; const getValidationErrorsRecursively = ( validationErrors: ValidationError[], parentProperty = '', ) => { for (const error of validationErrors) { const propertyPath = parentProperty ? `${parentProperty}.${error.property}` : error.property; if (error.constraints) { errors.push({ property: propertyPath, errors: Object.values(error.constraints), }); } if (error.children?.length) { getValidationErrorsRecursively(error.children, propertyPath); } } }; getValidationErrorsRecursively(validationErrors, parentProperty); return errors; }; const errors = getPrettyClassValidatorErrors(validationErrors); return new BadRequestException({ message: 'validation error', errors: errors, }); }, }), ); await app.listen(3000); } bootstrap();
This looks way better. Hopefully, you don’t go through what I went through with the front-end developers to get here ?. Let’s go through what is happening.
We passed an anonymous function to exceptionFactory. The functions accept the array of validation errors. Diving into the validationError interface.
export interface ValidationError { target?: Record<string, any>; property: string; value?: any; constraints?: { [type: string]: string; }; children?: ValidationError[]; contexts?: { [type: string]: any; }; }
For example, if we apply IsEmail() on a field and the provided value is not valid. A validation error is created. We also want to know the property where the error occurred. We need to keep in mind that, we can have nested objects for example the photos in UserCreateDto and therefore we can have a parent property let’s say, photos where the error is with the url in the UserPhotoDto.
We first declare an inner function, that takes the errors and sets the parent property to an empty string since it is the root field.
const getValidationErrorsRecursively = ( validationErrors: ValidationError[], parentProperty = '', ) => { };
We then loop through the errors and get the property. For nested objects, I prefer to show the fields as photos.0.url. Where 0 is the index of the invalid photo in the array.
The error messages are stored in the constraints field as it’s in the validationError interface. We retrieve these errors and store them under a specific field.
if (error.constraints) { errors.push({ property: propertyPath, errors: Object.values(error.constraints), }); }
For nested objects, the children property of a validation error contains an array of validationError for the nested objects. We can easily get the errors by recursively calling our function and passing the parent property.
if (error.children?.length) { getValidationErrorsRecursively(error.children, propertyPath); }
While Class-validator provides a comprehensive set of built-in validators, there are times when your requirements exceed the standard validation rules or the standard validation doesn’t fit what you want to do. Custom validators are useful when you need to enforce rules that aren’t covered by the standard validators. Examples:
To create a custom validator, we have to define a new class that implements the ValidatorConstraintInterface from class-validator. This requires us to implement two methods:
Create a new folder in users module named validators. Create two files, is-valid-password.validator.ts and is-username-unique.validator.ts. It should look like this.
A valid password in our use case is very simple. it should contains
Update is-valid-password.validator.ts
import { ValidatorConstraint, ValidatorConstraintInterface, ValidationArguments, } from 'class-validator'; @ValidatorConstraint({ name: 'IsStrongPassword', async: false }) export class IsValidPasswordConstraint implements ValidatorConstraintInterface { validate(password: string, args: ValidationArguments) { return ( typeof password === 'string' && password.length > 5 && password.length <= 20 && /[A-Z]/.test(password) && /[a-z]/.test(password) && /[0–9]/.test(password) && /[!@#$%^&*(),.?":{}|<>]/.test(password) ); } defaultMessage(args: ValidationArguments) { return 'Password must be between 6 and 20 characters long and include at least one uppercase letter, one lowercase letter, one number, and one special character'; } }
IsValidPasswordContraint is a custom validator because it is decorated with ValidatorConstraint(), we provide our custom validation rules in the validate method. If the validate function returns false, the error message in the defaultMessage will be returned. Providing these methods implements the ValidatorContraintInterface. To use isValidPasswordContraint, update the password field in UserCreateDto. For ValidatorConstraint({ name: ‘IsStrongPassword’, async: false }), we provided the constraint name that will be used to retrieve the error and also, since all actions in the validate are synchronous, we set async to false.
import { Validate } from 'class-validator'; export class UserCreateDto { // other fields @Validate(IsValidPasswordConstraint) public readonly password: string; }
Now, if we try again with an invalid password, we get this result indicating our custom validator is working.
We can go further and create a decorator for the validator so that we can decorate the password field without using the Validate.
Update is-valid-password.validator.ts
import { ValidatorConstraint, ValidatorConstraintInterface, ValidationArguments, registerDecorator, ValidatorOptions, } from 'class-validator'; @ValidatorConstraint({ name: 'IsStrongPassword', async: false }) class IsValidPasswordConstraint implements ValidatorConstraintInterface { // removing the implementation so that we focus on IsPasswordValid function } export function IsValidPassword(validationOptions?: ValidatorOptions) { return function (object: NonNullable<unknown>, propertyName: string) { registerDecorator({ target: object.constructor, propertyName: propertyName, options: validationOptions, constraints: [], validator: IsValidPasswordConstraint, }); }; }
Creating custom decorators makes working with validators a breeze, NestJs gives us registerDecorator to create our own. we provide it with the validator which is the IsValidPasswordContraint we created. We can use it like this
export class UserCreateDto { // other fields @IsValidPassword() public readonly password: string; }
It is common to encounter scenarios where you need to validate against external systems. Let’s assume that the username in UserCreateDto is unique across the various servers.
Update is-unique-username.validator.ts
import { ValidatorConstraint, ValidatorConstraintInterface, ValidationArguments, registerDecorator, ValidationOptions, } from 'class-validator'; interface IsUsernameUniqueOptions { server: string; message?: string; } @ValidatorConstraint({ name: 'IsUsernameUnique', async: true }) export class IsUsernameUniqueConstraint implements ValidatorConstraintInterface { async validate(username: string, args: ValidationArguments) { const options = args.constraints[0] as IsUsernameUniqueOptions; const server = options.server; // server check, let assume username exist return !(await this.checkUsernameOnServer(username, server)); } defaultMessage(args: ValidationArguments) { const options = args?.constraints[0] as IsUsernameUniqueOptions; return options?.message || 'Username is already taken'; } async checkUsernameOnServer(username: string, server: string) { return true; } } export function IsUsernameUnique( options: IsUsernameUniqueOptions, validationOptions?: ValidationOptions,) { return function (object: object, propertyName: string) { registerDecorator({ target: object.constructor, propertyName: propertyName, options: validationOptions, constraints: [options], validator: IsUsernameUniqueConstraint, }); }; }
Usage
export class UserCreateDto { @IsString() @Length(2, 30, { message: 'Name must be between 2 and 30 characters' }) @Transform(({ value }) => value.trim()) @IsUsernameUnique({ server: 'east-1', message: 'Name already exists' }) public readonly name: string; // other fields }
We created a simple interface to show the possible options we can pass to the decorator. These options are constraints that will be used by IsUsernameUniqueConstraint, we can get them through the validation arguments . const options = args.constraints[0] as IsUsernameUniqueOptions;
Logging options give us { server: ‘east-1’, message: ‘Name already exists’ }, We then called the required service and passed the server name and username to validate the uniqueness of the name.
Also, async is set to true to allow asynchronous operations inside the validate function; ValidatorConstraint({ name: ‘IsUsernameUnique’, async: true }).
It is necessary to be aware of common pitfalls to ensure robust and maintainable code.
There is so much to add like validation groups, using service containers, etc, but this article is getting way longer than I anticipated ?. As you continue developing with NestJS, I encourage you to explore more complex use cases and scenarios and share your experiences to keep the learning journey going.
Data validation is crucial in ensuring data integrity within any application and the principles covered here will serve as a strong foundation for further growth and mastery in building secure and efficient applications.
This is my very first article, and I’m eager to hear your thoughts! ? Please feel free to leave any feedback in the comments.
If you’d like to connect and stay updated on future content, you can find me on LinkedIn
Happy Coding !!!
以上がNestJS でのデータ検証のマスター: Class-Validator と Class-Transformer の完全ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。