


AWS SnapStart - パート さまざまなガベージ コレクション アルゴリズムを使用した Java によるコールド スタートとウォーム スタートの測定
pengenalan
Dalam bahagian sebelumnya dalam siri kami, kami mengukur permulaan sejuk fungsi Lambda dengan masa jalan Java 21 tanpa SnapStart didayakan, dengan SnapStart didayakan dan juga menggunakan pengoptimuman penyebuan invokasi DynamoDB dengan tetapan memori Lambda yang berbeza, saiz artifak penggunaan Lambda, Java pilihan kompilasi, (a) klien HTTP segerak dan penggunaan lapisan Lambda yang berbeza. Untuk semua ukuran ini kami menggunakan algoritma kutipan sampah lalai G1.
Dalam artikel ini kami ingin meneroka kesan algoritma pengumpulan sampah Java pada prestasi fungsi Lambda dengan masa jalan Java 21. Kami juga akan mengukur semula segala-galanya untuk G1 mempunyai hasil yang setanding dengan versi Java 21 kecil yang sama yang digunakan untuk semua algoritma pengumpulan sampah.
Algoritma pengumpulan Sampah Java
Untuk pengukuran kami, kami akan menggunakan algoritma pengumpulan Java berikut dengan tetapan lalainya (sila rujuk dokumentasi yang dipautkan untuk mendapatkan maklumat lebih terperinci tentang setiap algoritma):
- Sampah-Didahulukan (G1) Pengumpul Sampah. Ini ialah algoritma kutipan sampah yang digunakan secara lalai. Anda boleh menetapkannya secara eksplisit dalam templat AWS SAM dengan menambahkan -XX:+UseG1GC pada pembolehubah persekitaran JAVA_TOOL_OPTIONS.
- Pengumpul Selari. Anda boleh menetapkannya secara eksplisit dalam templat AWS SAM dengan menambahkan -XX:+UseParallelGC pada pembolehubah persekitaran JAVA_TOOL_OPTIONS.
- Shenandoah GC. Oracle JDK tidak menyediakannya, tetapi Amazon Corretto 21 JDK menyediakannya. Anda boleh menetapkannya secara eksplisit dalam templat AWS SAM dengan menambahkan -XX:+UseShenandoahGC pada pembolehubah persekitaran JAVA_TOOL_OPTIONS.
- Pengumpul Sampah Z. Terdapat 2 algoritma ZGC yang berbeza: lalai dan yang lebih baharu satu generasi. Anda boleh menetapkannya secara eksplisit dalam templat AWS SAM dengan menambahkan -XX:+UseZGC atau -XX:+UseZGC -XX:+ZGenerational pada pembolehubah persekitaran JAVA_TOOL_OPTIONS.
Mengukur sejuk dan hangat bermula dengan Java 21 menggunakan algoritma pengumpulan sampah yang berbeza
Dalam percubaan kami, kami akan menggunakan aplikasi yang diubah suai sedikit yang diperkenalkan pada bahagian 9. Anda boleh mencari kod aplikasi di sini. Pada asasnya terdapat 2 fungsi Lambda yang kedua-duanya bertindak balas kepada permintaan Gateway API dan mendapatkan semula produk mengikut id yang diterima daripada Gateway API daripada DynamoDB. Satu fungsi Lambda GetProductByIdWithPureJava21LambdaWithGCAlg boleh digunakan dengan dan tanpa SnapStart dan yang kedua GetProductByIdWithPureJava21LambdaAndPrimingWithGCAlg menggunakan penyebuan permintaan SnapStart dan DynamoDB.
Keputusan percubaan di bawah adalah berdasarkan pembiakan lebih daripada 100 sejuk dan kira-kira 100,000 panas bermula dengan eksperimen yang berlangsung selama kira-kira 1 jam. Untuk itu (dan percubaan dari artikel saya sebelum ini) saya menggunakan alat ujian beban hey, tetapi anda boleh menggunakan apa sahaja alat yang anda mahu, seperti Serverless-artillery atau Postman. Kami menjalankan percubaan dengan memberikan fungsi Lambda 1024 MB memori dan menggunakan JAVA_TOOL_OPTIONS: "-XX:+TieredCompilation -XX:TieredStopAtLevel=1" (Kompilasi klien Java tanpa pemprofilan) yang mempunyai pertukaran yang sangat baik antara masa mula sejuk dan hangat.
Malangnya saya tidak dapat membuat fungsi Lambda bermula dengan The Z Garbage Collector (dengan kedua-dua lalai dan generasi) mengalami ralat :
Failed to commit memory (Operation not permitted) [error][gc] Forced to lower max Java heap size from 872M(100%) to 0M(0%) [error][gc] Failed to allocate initial Java heap (512M) Error: Could not create the Java Virtual Machine. Error: A fatal exception has occurred. Program will exit.
Ia mencuba tetapan memori yang lebih besar sebagai 1024 seperti 2048 MB dan lebih banyak MB, tetapi ralat yang sama masih muncul.
Mari kita lihat hasil pengukuran kami dengan 3 algoritma kutipan sampah yang lain.
Singkatan c ialah untuk permulaan sejuk dan w adalah untuk permulaan hangat.
Masa mula sejuk (c) dan hangat (w) tanpa SnapStart didayakan dalam ms:
GC Algorithm | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | 3655.17 | 3725.25 | 3811.88 | 4019.25 | 4027.30 | 4027.83 | 5.46 | 6.10 | 7.10 | 16.79 | 48.06 | 1929.79 |
Parallel Collector | 3714.10 | 3789.09 | 3857.87 | 3959.44 | 4075.89 | 4078.25 | 5.55 | 6.20 | 7.10 | 15.38 | 130.13 | 2017.92 |
Shenandoah | 3963.40 | 4019.25 | 4096.30 | 4221.00 | 4388.78 | 4390.76 | 5.82 | 6.45 | 7.39 | 17.06 | 71.02 | 2159.21 |
プライミングなしでスナップスタートを有効にした場合のコールド (c) およびウォーム (w) スタート時間 (ミリ秒):
GC Algorithm | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | 1867.27 | 1935.68 | 2152.02 | 2416.57 | 2426.25 | 2427.35 | 5.47 | 6.11 | 7.05 | 17.41 | 51.24 | 1522.04 |
Parallel Collector | 1990.62 | 2047.12 | 2202.07 | 2402.12 | 2418.99 | 2419.32 | 5.68 | 6.35 | 7.45 | 18.04 | 147.83 | 1577.21 |
Shenandoah | 2195.47 | 2301.07 | 2563.37 | 3004.89 | 3029.01 | 3030.36 | 5.73 | 6.41 | 7.51 | 17.97 | 75.00 | 1843.34 |
SnapStart が有効で、DynamoDB 呼び出しプライミングを使用した場合のコールド (c) およびウォーム (w) スタート時間 (ミリ秒):
GC Algorithm | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | 833.50 | 875.34 | 1089.53 | 1205.26 | 1269.56 | 1269.8 | 5.46 | 6.10 | 7.16 | 16.39 | 46.19 | 499.13 |
Parallel Collector | 900.18 | 975.12 | 1058.41 | 1141.94 | 1253.17 | 1253.99 | 5.82 | 6.61 | 7.75 | 16.87 | 49.64 | 487.73 |
Shenandoah | 1065.84 | 1131.71 | 1331.96 | 1473.44 | 1553.59 | 1554.95 | 5.77 | 6.40 | 7.39 | 17.20 | 65.06 | 500.48 |
結論
この記事では、Java 21 ランタイムでの Lambda 関数のパフォーマンスに対する Java ガベージ コレクション アルゴリズム (G1、Parallel Collector、および Shenandoah) の影響を調査しました。これらのアルゴリズムのパフォーマンスにはかなりの違いがあることがわかりました。 G1 (デフォルト) でデフォルト設定を使用すると、(場合によっては断然) コールド スタート時間とウォーム スタート時間が最も短くなります。 DynamoDB リクエストのプライミングで SnapStart を使用すると、パフォーマンス結果は予想通り相互にかなり近くなります。
各ガベージ コレクション アルゴリズムのドキュメントを参照して、パフォーマンスを大幅に向上させるミックスや最大メモリなどの設定を調整し、独自の測定を行ってください。
以上がAWS SnapStart - パート さまざまなガベージ コレクション アルゴリズムを使用した Java によるコールド スタートとウォーム スタートの測定の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











一部のアプリケーションが適切に機能しないようにする会社のセキュリティソフトウェアのトラブルシューティングとソリューション。多くの企業は、内部ネットワークセキュリティを確保するためにセキュリティソフトウェアを展開します。 ...

システムドッキングでのフィールドマッピング処理は、システムドッキングを実行する際に難しい問題に遭遇することがよくあります。システムのインターフェイスフィールドを効果的にマッピングする方法A ...

データベース操作にMyBatis-Plusまたはその他のORMフレームワークを使用する場合、エンティティクラスの属性名に基づいてクエリ条件を構築する必要があることがよくあります。あなたが毎回手動で...

多くのアプリケーションシナリオでソートを実装するために名前を数値に変換するソリューションでは、ユーザーはグループ、特に1つでソートする必要がある場合があります...

intellijideaultimatiateバージョンを使用してスプリングを開始します...

Javaオブジェクトと配列の変換:リスクの詳細な議論と鋳造タイプ変換の正しい方法多くのJava初心者は、オブジェクトのアレイへの変換に遭遇します...

eコマースプラットフォーム上のSKUおよびSPUテーブルの設計の詳細な説明この記事では、eコマースプラットフォームでのSKUとSPUのデータベース設計の問題、特にユーザー定義の販売を扱う方法について説明します。

データベースクエリにTKMYBATISを使用する場合、クエリ条件を構築するためにエンティティクラスの変数名を優雅に取得する方法は一般的な問題です。この記事はピン留めします...
