AWS SAM Lambda プロジェクト用のローカル開発サーバー
現在、私は AWS ラムダをリクエスト ハンドラーとして使用して REST API を構築するプロジェクトに取り組んでいます。全体として AWS SAM を使用してラムダとレイヤーを定義し、それを優れた template.yaml ファイルで API ゲートウェイに接続します。
問題
この API をローカルでテストすることは、他のフレームワークほど簡単ではありません。 AWS は、ラムダ (Lambda 環境をより適切に複製する) をホストする Docker イメージを構築するための sam local コマンドを提供していますが、このアプローチは開発中に迅速に反復するには重すぎることがわかりました。
解決策
次のような方法が欲しかったです:
- ビジネス ロジックとデータ検証をすばやくテストします
- フロントエンド開発者がテストするためのローカル サーバーを提供します
- 変更のたびに Docker イメージを再構築するオーバーヘッドを回避します
そこで、これらのニーズに対応するスクリプトを作成しました。 ?♂️
TL;DR: この GitHub リポジトリのserver_local.py をチェックしてください。
主な利点
- クイックセットアップ: API Gateway ルートを Flask ルートにマッピングするローカル Flask サーバーを起動します。
- 直接実行: Docker のオーバーヘッドなしで、Python 関数 (Lambda ハンドラー) を直接トリガーします。
- ホットリロード: 変更はすぐに反映され、開発フィードバック ループが短縮されます。
この例は、sam init の「Hello World」プロジェクトに基づいて構築されており、ローカル開発を可能にするために server_local.py とその要件が追加されています。
SAM テンプレートの読み取り
ここで私がやっていることは、インフラストラクチャとすべてのラムダの現在の定義があるため、最初に template.yaml を読み取ることです。
辞書定義を作成するために必要なコードはこれだけです。 SAM テンプレートに固有の関数を処理するために、いくつかのコンストラクターを CloudFormationLoader に追加しました。別のオブジェクトへの参照として Ref、置換するメソッドとして Sub、属性を取得する GetAtt をサポートできるようになりました。ここにさらにロジックを追加できると思いますが、現時点ではこれで十分に機能します。
import os from typing import Any, Dict import yaml class CloudFormationLoader(yaml.SafeLoader): def __init__(self, stream): self._root = os.path.split(stream.name)[0] # type: ignore super(CloudFormationLoader, self).__init__(stream) def include(self, node): filename = os.path.join(self._root, self.construct_scalar(node)) # type: ignore with open(filename, "r") as f: return yaml.load(f, CloudFormationLoader) def construct_getatt(loader, node): if isinstance(node, yaml.ScalarNode): return {"Fn::GetAtt": loader.construct_scalar(node).split(".")} elif isinstance(node, yaml.SequenceNode): return {"Fn::GetAtt": loader.construct_sequence(node)} else: raise yaml.constructor.ConstructorError( None, None, f"Unexpected node type for !GetAtt: {type(node)}", node.start_mark ) CloudFormationLoader.add_constructor( "!Ref", lambda loader, node: {"Ref": loader.construct_scalar(node)} # type: ignore ) CloudFormationLoader.add_constructor( "!Sub", lambda loader, node: {"Fn::Sub": loader.construct_scalar(node)} # type: ignore ) CloudFormationLoader.add_constructor("!GetAtt", construct_getatt) def load_template() -> Dict[str, Any]: with open("template.yaml", "r") as file: return yaml.load(file, Loader=CloudFormationLoader)
これにより、次のような json が生成されます。
{ "AWSTemplateFormatVersion":"2010-09-09", "Transform":"AWS::Serverless-2016-10-31", "Description":"sam-app\nSample SAM Template for sam-app\n", "Globals":{ "Function":{ "Timeout":3, "MemorySize":128, "LoggingConfig":{ "LogFormat":"JSON" } } }, "Resources":{ "HelloWorldFunction":{ "Type":"AWS::Serverless::Function", "Properties":{ "CodeUri":"hello_world/", "Handler":"app.lambda_handler", "Runtime":"python3.9", "Architectures":[ "x86_64" ], "Events":{ "HelloWorld":{ "Type":"Api", "Properties":{ "Path":"/hello", "Method":"get" } } } } } }, "Outputs":{ "HelloWorldApi":{ "Description":"API Gateway endpoint URL for Prod stage for Hello World function", "Value":{ "Fn::Sub":"https://${ServerlessRestApi}.execute-api.${AWS::Region}.amazonaws.com/Prod/hello/" } }, "HelloWorldFunction":{ "Description":"Hello World Lambda Function ARN", "Value":{ "Fn::GetAtt":[ "HelloWorldFunction", "Arn" ] } }, "HelloWorldFunctionIamRole":{ "Description":"Implicit IAM Role created for Hello World function", "Value":{ "Fn::GetAtt":[ "HelloWorldFunctionRole", "Arn" ] } } } }
レイヤーの処理
これにより、各エンドポイントの Flask ルートを動的に作成するのが簡単になります。しかし、その前に余計なことを。
sam init helloworld アプリではレイヤーが定義されていません。しかし、実際のプロジェクトではこの問題が発生しました。これを適切に動作させるために、レイヤー定義を読み取り、Python インポートが正しく動作できる sys.path に追加する関数を追加しました。これをチェックしてください:
def add_layers_to_path(template: Dict[str, Any]): """Add layers to path. Reads the template and adds the layers to the path for easier imports.""" resources = template.get("Resources", {}) for _, resource in resources.items(): if resource.get("Type") == "AWS::Serverless::LayerVersion": layer_path = resource.get("Properties", {}).get("ContentUri") if layer_path: full_path = os.path.join(os.getcwd(), layer_path) if full_path not in sys.path: sys.path.append(full_path)
Flask ルートの作成
では、リソース全体をループしてすべての関数を見つける必要があります。それに基づいて、フラスコルートに必要なデータを作成しています。
def export_endpoints(template: Dict[str, Any]) -> List[Dict[str, str]]: endpoints = [] resources = template.get("Resources", {}) for resource_name, resource in resources.items(): if resource.get("Type") == "AWS::Serverless::Function": properties = resource.get("Properties", {}) events = properties.get("Events", {}) for event_name, event in events.items(): if event.get("Type") == "Api": api_props = event.get("Properties", {}) path = api_props.get("Path") method = api_props.get("Method") handler = properties.get("Handler") code_uri = properties.get("CodeUri") if path and method and handler and code_uri: endpoints.append( { "path": path, "method": method, "handler": handler, "code_uri": code_uri, "resource_name": resource_name, } ) return endpoints
次のステップは、それを使用してそれぞれのルートを設定することです。
def setup_routes(template: Dict[str, Any]): endpoints = export_endpoints(template) for endpoint in endpoints: setup_route( endpoint["path"], endpoint["method"], endpoint["handler"], endpoint["code_uri"], endpoint["resource_name"], ) def setup_route(path: str, method: str, handler: str, code_uri: str, resource_name: str): module_name, function_name = handler.rsplit(".", 1) module_path = os.path.join(code_uri, f"{module_name}.py") spec = importlib.util.spec_from_file_location(module_name, module_path) if spec is None or spec.loader is None: raise Exception(f"Module {module_name} not found in {code_uri}") module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) handler_function = getattr(module, function_name) path = path.replace("{", "<").replace("}", ">") print(f"Setting up route for [{method}] {path} with handler {resource_name}.") # Create a unique route handler for each Lambda function def create_route_handler(handler_func): def route_handler(*args, **kwargs): event = { "httpMethod": request.method, "path": request.path, "queryStringParameters": request.args.to_dict(), "headers": dict(request.headers), "body": request.get_data(as_text=True), "pathParameters": kwargs, } context = LambdaContext(resource_name) response = handler_func(event, context) try: api_response = APIResponse(**response) headers = response.get("headers", {}) return Response( api_response.body, status=api_response.statusCode, headers=headers, mimetype="application/json", ) except ValidationError as e: return jsonify({"error": "Invalid response format", "details": e.errors()}), 500 return route_handler # Use a unique endpoint name for each route endpoint_name = f"{resource_name}_{method}_{path.replace('/', '_')}" app.add_url_rule( path, endpoint=endpoint_name, view_func=create_route_handler(handler_function), methods=[method.upper(), "OPTIONS"], )
そして、
でサーバーを起動できます
if __name__ == "__main__": template = load_template() add_layers_to_path(template) setup_routes(template) app.run(debug=True, port=3000)
それだけです。コード全体は github https://github.com/JakubSzwajka/aws-sam-lambda-local-server-python で入手できます。レイヤーなどの例外的なケースを見つけた場合は、改善できる場合、またはこれにさらに何かを追加する価値があると思われる場合は、お知らせください。とても役に立ちます。
潜在的な問題
要するに、これはローカル環境で動作します。ラムダにはメモリと CPU にいくつかの制限が適用されることに注意してください。最終的には実際の環境でテストするのが良いでしょう。このアプローチは、開発プロセスをスピードアップするためにのみ使用する必要があります。
これをプロジェクトに実装する場合は、洞察を共有してください。うまくいきましたか?直面した課題はありますか?あなたのフィードバックは、すべての人にとってこのソリューションの改善に役立ちます。
もっと知りたいですか?
さらなる洞察とチュートリアルにご期待ください!私のブログにアクセスしてください?
以上がAWS SAM Lambda プロジェクト用のローカル開発サーバーの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
