このチュートリアルでは、ユーザーが PDF をアップロードし、OpenAI の API を使用してそのコンテンツを取得し、 を使用してチャットのようなインターフェイスに応答を表示できるシンプルなチャット インターフェイスを構築します。ストリームリット。また、@pinata を利用して PDF ファイルをアップロードして保存します。
次に進む前に、構築しているものを少し見てみましょう:
前提条件:
まず、新しい Python プロジェクト ディレクトリを作成します。
mkdir chat-with-pdf cd chat-with-pdf python3 -m venv venv source venv/bin/activate pip install streamlit openai requests PyPDF2
次に、プロジェクトのルートに .env ファイルを作成し、次の環境変数を追加します。
PINATA_API_KEY=<Your Pinata API Key> PINATA_SECRET_API_KEY=<Your Pinata Secret Key> OPENAI_API_KEY=<Your OpenAI API Key>
OPENAI_API_KEY は有料なので自分で管理する必要がありますが、Pinita で API キーを作成するプロセスを見てみましょう。
それでは、先に進む前に、ピニャータを使用する理由をお知らせください。
Pinata は、分散型 および 分散型 ファイル ストレージ システムである IPFS (InterPlanetary File System) 上でファイルを保存および管理するためのプラットフォームを提供するサービスです。
サインインして必要なトークンを作成しましょう:
次のステップは、登録したメールアドレスを確認することです:
サインインを確認して API キーを生成した後:
その後、API キーセクションに移動し、新しい API キーを作成します:
最後に、キーが正常に生成されました。そのキーをコピーして、コード エディターに保存してください。
OPENAI_API_KEY=<Your OpenAI API Key> PINATA_API_KEY=dfc05775d0c8a1743247 PINATA_SECRET_API_KEY=a54a70cd227a85e68615a5682500d73e9a12cd211dfbf5e25179830dc8278efc
Pinata の API を使用して PDF をアップロードし、各ファイルのハッシュ (CID) を取得します。 PDF アップロードを処理するために pinata_helper.py という名前のファイルを作成します。
import os # Import the os module to interact with the operating system import requests # Import the requests library to make HTTP requests from dotenv import load_dotenv # Import load_dotenv to load environment variables from a .env file # Load environment variables from the .env file load_dotenv() # Define the Pinata API URL for pinning files to IPFS PINATA_API_URL = "https://api.pinata.cloud/pinning/pinFileToIPFS" # Retrieve Pinata API keys from environment variables PINATA_API_KEY = os.getenv("PINATA_API_KEY") PINATA_SECRET_API_KEY = os.getenv("PINATA_SECRET_API_KEY") def upload_pdf_to_pinata(file_path): """ Uploads a PDF file to Pinata's IPFS service. Args: file_path (str): The path to the PDF file to be uploaded. Returns: str: The IPFS hash of the uploaded file if successful, None otherwise. """ # Prepare headers for the API request with the Pinata API keys headers = { "pinata_api_key": PINATA_API_KEY, "pinata_secret_api_key": PINATA_SECRET_API_KEY } # Open the file in binary read mode with open(file_path, 'rb') as file: # Send a POST request to Pinata API to upload the file response = requests.post(PINATA_API_URL, files={'file': file}, headers=headers) # Check if the request was successful (status code 200) if response.status_code == 200: print("File uploaded successfully") # Print success message # Return the IPFS hash from the response JSON return response.json()['IpfsHash'] else: # Print an error message if the upload failed print(f"Error: {response.text}") return None # Return None to indicate failure
ステップ 3: OpenAI のセットアップ
次に、OpenAI API を使用して PDF から抽出されたテキストを操作する関数を作成します。チャット応答には OpenAI の gpt-4o または gpt-4o-mini モデルを活用します。
新しいファイル openai_helper.py を作成します:
import os from openai import OpenAI from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Initialize OpenAI client with the API key OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) def get_openai_response(text, pdf_text): try: # Create the chat completion request print("User Input:", text) print("PDF Content:", pdf_text) # Optional: for debugging # Combine the user's input and PDF content for context messages = [ {"role": "system", "content": "You are a helpful assistant for answering questions about the PDF."}, {"role": "user", "content": pdf_text}, # Providing the PDF content {"role": "user", "content": text} # Providing the user question or request ] response = client.chat.completions.create( model="gpt-4", # Use "gpt-4" or "gpt-4o mini" based on your access messages=messages, max_tokens=100, # Adjust as necessary temperature=0.7 # Adjust to control response creativity ) # Extract the content of the response return response.choices[0].message.content # Corrected access method except Exception as e: return f"Error: {str(e)}"
ヘルパー関数の準備ができたので、PDF をアップロードし、OpenAI から応答を取得し、チャットを表示する Streamlit アプリを構築します。
app.py という名前のファイルを作成します:
import streamlit as st import os import time from pinata_helper import upload_pdf_to_pinata from openai_helper import get_openai_response from PyPDF2 import PdfReader from dotenv import load_dotenv # Load environment variables load_dotenv() st.set_page_config(page_title="Chat with PDFs", layout="centered") st.title("Chat with PDFs using OpenAI and Pinata") uploaded_file = st.file_uploader("Upload your PDF", type="pdf") # Initialize session state for chat history and loading state if "chat_history" not in st.session_state: st.session_state.chat_history = [] if "loading" not in st.session_state: st.session_state.loading = False if uploaded_file is not None: # Save the uploaded file temporarily file_path = os.path.join("temp", uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) # Upload PDF to Pinata st.write("Uploading PDF to Pinata...") pdf_cid = upload_pdf_to_pinata(file_path) if pdf_cid: st.write(f"File uploaded to IPFS with CID: {pdf_cid}") # Extract PDF content reader = PdfReader(file_path) pdf_text = "" for page in reader.pages: pdf_text += page.extract_text() if pdf_text: st.text_area("PDF Content", pdf_text, height=200) # Allow user to ask questions about the PDF user_input = st.text_input("Ask something about the PDF:", disabled=st.session_state.loading) if st.button("Send", disabled=st.session_state.loading): if user_input: # Set loading state to True st.session_state.loading = True # Display loading indicator with st.spinner("AI is thinking..."): # Simulate loading with sleep (remove in production) time.sleep(1) # Simulate network delay # Get AI response response = get_openai_response(user_input, pdf_text) # Update chat history st.session_state.chat_history.append({"user": user_input, "ai": response}) # Clear the input box after sending st.session_state.input_text = "" # Reset loading state st.session_state.loading = False # Display chat history if st.session_state.chat_history: for chat in st.session_state.chat_history: st.write(f"**You:** {chat['user']}") st.write(f"**AI:** {chat['ai']}") # Auto-scroll to the bottom of the chat st.write("<style>div.stChat {overflow-y: auto;}</style>", unsafe_allow_html=True) # Add three dots as a loading indicator if still waiting for response if st.session_state.loading: st.write("**AI is typing** ...") else: st.error("Could not extract text from the PDF.") else: st.error("Failed to upload PDF to Pinata.")
アプリをローカルで実行するには、次のコマンドを使用します:
streamlit run app.py
ファイルは Pinata プラットフォームに正常にアップロードされました:
ピニャータのアップロード
PDF 抽出
OpenAI インタラクション
最終コードはこの github リポジトリで入手できます:
https://github.com/Jagroop2001/chat-with-pdf
このブログは以上です。さらなるアップデートに注目して、素晴らしいアプリを構築し続けてください! ?✨
コーディングを楽しんでください! ?
以上がPinata、OpenAI、Streamlit を使用して PDF とチャットするの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。