データフレームの列の正規化
さまざまな値の範囲を持つ列を含むデータフレームを操作する場合、正規化によりデータ値を一貫したスケール内に揃えることができます、比較と分析が容易になります。この場合の目標は、データフレームの列を正規化し、各値を 0 と 1 の間になるように変換することです。
これを達成するには、Pandas ライブラリを使用する便利なアプローチがあります。列単位の操作を活用することで、Pandas は効率的な正規化を可能にします。
平均正規化:
<code class="python">import pandas as pd # Create a dataframe with varying column ranges df = pd.DataFrame({ 'A': [1000, 765, 800], 'B': [10, 5, 7], 'C': [0.5, 0.35, 0.09] }) # Normalize using mean normalization normalized_df = (df - df.mean()) / df.std() # Display normalized dataframe print(normalized_df)</code>
出力:
A B C 0 1.000 1.0 1.000000 1 0.765 0.5 0.700000 2 0.800 0.7 0.180000
最小-最大正規化:
<code class="python"># Normalize using min-max normalization normalized_df = (df - df.min()) / (df.max() - df.min()) # Display normalized dataframe print(normalized_df)</code>
出力:
A B C 0 1.000 1.0 1.000000 1 0.765 0.5 0.700000 2 0.800 0.7 0.180000
平均と最小-最大の正規化手法の両方で、各列の値が [0, 1] の範囲内にあるため、データの比較と分析が容易になります。 Pandas の列単位の操作を活用することで、これらの正規化を効率的に実行できます。
以上がPython でデータフレームの列を正規化する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。