高度なストライディングは移動平均フィルターの効率をどのように向上させることができますか?
高度なストライディングを使用したより効率的な移動平均フィルター
概要:
移動の計算大規模なデータセットに対する平均フィルターは、計算コストが高くなる可能性があります。畳み込みフィルターを使用した標準的な実装は低速になる可能性がありますが、高度なストライディング手法はより効率的なソリューションを提供します。
提案された手法:
提案された手法には、NumPy の stride_tricks.as_strided( ) 関数を使用して、元の配列上の移動ウィンドウに対応する配列を作成します。この配列を垂直方向と水平方向にローリングすることで、カーネル値を効率的に合計して各ピクセルの平均を計算できます。
実装:
次のコードは、次のコードの実装を示します。この手法:
<code class="python">import numpy as np filtsize = 3 a = numpy.arange(100).reshape((10,10)) b = np.lib.stride_tricks.as_strided(a, shape=(a.size,filtsize), strides=(a.itemsize, a.itemsize)) for i in range(0, filtsize-1): if i > 0: b += numpy.roll(b, -(pow(filtsize,2)+1)*i, 0) filtered = (numpy.sum(b, 1) / pow(filtsize,2)).reshape((a.shape[0],a.shape[1]))</code>
利点:
この手法には、従来の畳み込みフィルタに比べていくつかの利点があります:
- メモリ効率: as_strided 配列は元の配列へのビューであるため、データセット全体を新しい配列にコピーする必要はありません。
- 計算効率: ローリング演算と合計演算により、 NumPy の最適化された関数を使用して効率的に実行できます。
- カスタマイズ可能なカーネル サイズと形状: filtsize パラメーターを使用すると、フィルターのサイズと形状を簡単に調整できます。
制限事項:
- エッジ処理: 提案された手法はエッジ ピクセルを正しく処理しません。この問題に対処するには、後処理手順が必要になる場合があります。
- 多次元配列: この手法は 1 次元配列に最適です。多次元配列の場合、メモリ使用量と計算コストが法外に高くなる可能性があります。
代替アプローチ:
- Numba JIT コンパイル: Just-in-時間コンパイルにより、この手法のパフォーマンスをさらに向上させることができます。
- SciPy の ndimage モジュール: 多次元配列の場合、SciPy のuniform_filter() 関数は、より効率的で包括的なソリューションを提供します。
以上が高度なストライディングは移動平均フィルターの効率をどのように向上させることができますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。
