NumPy の「np.select」を使用して配列に複数の条件を適用する方法
Numpy の "where" を使用して複数の条件を適用する
NumPy の "where" 関数を使用すると、配列内の要素を条件付きで選択する強力なツールになります。特定の基準に基づいて。ただし、「where」の標準実装では、対応する出力を伴う 2 つの条件のみが許可されます。これは、複数の条件が関係するシナリオを扱うときに制限になる可能性があります。
この問題に対処するための、より汎用性の高い解決策は、「np.select」関数を使用することです。 「np.select」を使用すると、複数の条件を同時に評価し、対応する出力を割り当てることができます。これを、消費エネルギー値に基づいてデータフレームにエネルギー クラスを割り当てる問題にどのように適用できるかを見てみましょう。
実装:
col = 'consumption_energy' conditions = [ df['consumption_energy'] >= 400, (df['consumption_energy'] < 400) & (df['consumption_energy']> 200), df['consumption_energy'] <= 200 ] choices = [ "high", 'medium', 'low' ] df['energy_class'] = np.select(conditions, choices, default=np.nan)
このコードは 3 つを作成します。 「consumption_energy」列の値に基づく条件:
- 'consumption_energy' >= 400: この条件に「high」を割り当てます。
- 'consumption_energy' < 400 および '消費エネルギー' > 200: この条件に「中」を割り当てます。
- 'consumption_energy'
「np.select」関数はそれぞれを評価します。いずれかの条件が満たされると、「選択」リストから対応する出力が割り当てられます。どの条件も満たされない場合は、デフォルト値として 'nan' が割り当てられます。
出力:
consumption_energy energy_class 0 459 high 1 416 high 2 186 low 3 250 medium 4 411 high 5 210 medium 6 343 medium 7 328 medium 8 208 medium 9 223 medium
ログイン後にコピー「np.select」を利用することで、は、指定された条件に基づいてエネルギー クラスを DataFrame に割り当てることに成功し、配列内の要素を選択するときに複数の条件を処理する汎用性の高い方法を提供します。
以上がNumPy の「np.select」を使用して配列に複数の条件を適用する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。
