目次
ブール インデックスを使用した Pandas データフレームとシリーズの効率的なフィルタリング
課題
解決策: ブール インデックス
ヘルパー関数
使用例
機能強化
ホームページ バックエンド開発 Python チュートリアル ブールインデックスを使用してパンダデータオブジェクトを効率的にフィルタリングする方法?

ブールインデックスを使用してパンダデータオブジェクトを効率的にフィルタリングする方法?

Oct 20, 2024 am 11:57 AM

How to Efficiently Filter Pandas Data Objects Using Boolean Indexing?

ブール インデックスを使用した Pandas データフレームとシリーズの効率的なフィルタリング

データ分析シナリオでは、複数のフィルターを適用して結果を絞り込むことが重要になることがよくあります。この記事の目的は、Pandas データ オブジェクトで複数の比較演算を連鎖させる効率的なアプローチを取り上げることです。

課題

目標は、関係演算子の辞書を処理し、それらを特定の Pandas に追加的に適用することです。シリーズまたはデータフレーム。フィルタリングされたデータセットになります。この操作では、特に大規模なデータセットを扱う場合、不必要なデータのコピーを最小限に抑える必要があります。

解決策: ブール インデックス

Pandas は、ブール インデックスを使用してデータをフィルタリングするための非常に効率的なメカニズムを提供します。ブール型インデックス作成には、論理条件の作成と、これらの条件を使用したデータのインデックス作成が含まれます。次の例を考えてみましょう:

<code class="python">df.loc[df['col1'] >= 1, 'col1']</code>
ログイン後にコピー

このコード行は、'col1' 列の値が 1 以上である DataFrame df 内のすべての行を選択します。結果は、次の内容を含む新しい Series オブジェクトです。フィルタリングされた値。

複数のフィルタを適用するには、& のような論理演算子を使用してブール条件を組み合わせることができます。 (と) と | (または)。例:

<code class="python">df[(df['col1'] >= 1) & (df['col1'] <= 1)]
ログイン後にコピー

この操作は、'col1' が 1 以上と 1 以下の両方である行をフィルターします。

ヘルパー関数

複数のフィルターを適用するプロセスを簡素化するために、ヘルパー関数を作成できます。

<code class="python">def b(x, col, op, n): 
    return op(x[col], n)

def f(x, *b):
    return x[(np.logical_and(*b))]
ログイン後にコピー

b 関数は、指定された列と演算子に対してブール条件を作成し、f は複数のブール条件を DataFrame または Series に適用します。

使用例

これらの関数を使用するには、フィルター条件の辞書を提供します。

<code class="python">filters = {'>=': [1], '<=': [1]}</code>
ログイン後にコピー
<code class="python">b1 = b(df, 'col1', ge, 1)
b2 = b(df, 'col1', le, 1)
filtered_df = f(df, b1, b2)</code>
ログイン後にコピー

このコードはフィルターを 'col1' に適用します。

機能強化

Pandas 0.13 では、文字列式を使用してフィルタを適用する便利な方法を提供するクエリ メソッドが導入されました。有効な列識別子の場合、次のコードが可能になります:

<code class="python">df.query('col1 <= 1 & 1 <= col1')</code>
ログイン後にコピー

この行は、より簡潔な構文を使用して、前の例と同じフィルタリングを実現します。

ブール型インデックスとヘルパー関数を利用することで、複数のフィルターを Pandas データフレームとシリーズに効率的に適用できます。このアプローチにより、特に大規模なデータセットを操作する場合に、データのコピーが最小限に抑えられ、パフォーマンスが向上します。

以上がブールインデックスを使用してパンダデータオブジェクトを効率的にフィルタリングする方法?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか? 中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか? Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は? あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は? Apr 01, 2025 pm 11:15 PM

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は? プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は? Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

uvicornは、serving_forever()なしでhttpリクエストをどのように継続的に聞いていますか? uvicornは、serving_forever()なしでhttpリクエストをどのように継続的に聞いていますか? Apr 01, 2025 pm 10:51 PM

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

Investing.comの反クローラーメカニズムをバイパスするニュースデータを取得する方法は? Investing.comの反クローラーメカニズムをバイパスするニュースデータを取得する方法は? Apr 02, 2025 am 07:03 AM

Investing.comの反クラウリング戦略を理解する多くの人々は、Investing.com(https://cn.investing.com/news/latest-news)からのニュースデータをクロールしようとします。

See all articles