ホームページ バックエンド開発 Python チュートリアル Python テスト シナリオで HTTP リクエストとレスポンスをモックする方法

Python テスト シナリオで HTTP リクエストとレスポンスをモックする方法

Oct 20, 2024 pm 07:44 PM

How to Mock HTTP Requests and Responses in Python Testing Scenarios?

Python テストのリクエストとレスポンスのモック化

Python テストでは、実行フローを制御するためにモジュールとその機能をモック化することが必要になります。そして特定のシナリオを検証します。このうち、requests モジュールのモック化は、HTTP リクエストに依存する関数やメソッドをテストするためによく使用されます。

次のコードを含む views.py ファイルを考えてみましょう:

<code class="python">def myview(request):
    res1 = requests.get('aurl')
    res2 = request.get('burl')
    res3 = request.get('curl')</code>
ログイン後にコピー

これをモックするには動作を確認するには、Python モック パッケージを使用できます。これを段階的に実現する方法は次のとおりです。

ステップ 1: モック動作を定義する

requests モジュールをモックするには、requests.get を置き換える関数を定義します。 ()。この関数では、URL ごとに必要な応答を指定できます。

<code class="python">def mocked_requests_get(*args, **kwargs):
    class MockResponse:
        def __init__(self, json_data, status_code):
            self.json_data = json_data
            self.status_code = status_code

        def json(self):
            return self.json_data

    if args[0] == 'aurl':
        return MockResponse({'a': 'a'}, 200)
    elif args[0] == 'burl':
        return MockResponse({'b': 'b'}, 200)
    elif args[0] == 'curl':
        return MockResponse({'c': 'c'}, 200)

    return MockResponse(None, 404)</code>
ログイン後にコピー

ステップ 2: リクエスト モジュールにパッチを適用する

テスト ケースでは、モックを使用します。 .patch() デコレータを使用して、実際のリクエスト モジュールをモック関数で置き換えます。

<code class="python">@mock.patch('requests.get', side_effect=mocked_requests_get)
def test_myview(self, mock_get):
    # Call the function you want to test
    myview(None)
    # Assertions for expected responses
    ...</code>
ログイン後にコピー

ステップ 3: アサーションを確認する

テスト関数内で、次のコマンドを使用できます。

<code class="python">self.assertEqual(mock_get.call_args_list[0][0][0], 'aurl')
self.assertEqual(mock_get.call_args_list[1][0][0], 'burl')
self.assertEqual(mock_get.call_args_list[2][0][0], 'curl')</code>
ログイン後にコピー

これらの手順に従うことで、HTTP リクエストを効果的にモックし、Python テスト シナリオでのレスポンスを制御できます。これにより、外部の依存関係が結果に干渉しないようにしながら、特定の機能を分離してテストできます。

以上がPython テスト シナリオで HTTP リクエストとレスポンスをモックする方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

See all articles