距離と曲率の制約を使用して、マルチセグメントの 3 次ベジェ曲線でデータを近似する方法
距離と曲率の制約を備えたマルチセグメント 3 次ベジェ曲線によるデータの近似
概要
マルチセグメントの 3 次ベジェ曲線を使用した複雑なデータの近似には、精度と計算効率のバランスという点で課題が生じます。既存のアルゴリズムは、曲線の滑らかさを犠牲にして速度を優先することが多く、望ましくない急カーブにつながります。
問題点
この問題に対処するために、近似できるアルゴリズムを探しています。 2 つの制約を遵守しながら、ベジェ曲線を使用してデータを作成します:
- 距離制約: ベジェ曲線は、データ ポイントから指定された距離を決して超えてはなりません。
- 曲率制約: ベジェ曲線は過度の曲率を示してはならず、滑らかで一貫した形状を確保します。
解決策
解決策には 2 つの要素が含まれます。 -step プロセス:
- B-スプライン近似: まず、B-スプライン曲線を使用してデータを近似します。これにより、自然な滑らかさが提供され、必要な「滑らかさ」の指定が可能になります。 ."
- ベジェ曲線への変換: B スプラインは、b_spline_to_bezier_series 関数を使用して一連のベジェ曲線に変換されます。
実装
scipy と matplotlib を使用した Python でのこのソリューションの実装は次のとおりです。
<code class="python">import matplotlib.pyplot as plt import numpy as np from scipy import interpolate tck, u = interpolate.splprep([x, y], s=3) unew = np.arange(0, 1.01, 0.01) out = interpolate.splev(unew, tck) plt.figure() plt.plot(x, y, out[0], out[1]) plt.show() # Convert to Bezier curves bezier_curves = b_spline_to_bezier_series(tck)</code>
splprep の s パラメーターを調整することで、近似の滑らかさを制御できます。結果のベジェ曲線は、距離と曲率の両方の制約を満たします。
結論
このソリューションは、複数セグメントのベジェ曲線を使用して複雑な形状のデータを近似する方法を提供します。滑らかさと距離制約の順守。これは、大規模なデータセットや複雑なジオメトリを処理できる堅牢かつ効率的なアプローチです。
以上が距離と曲率の制約を使用して、マルチセグメントの 3 次ベジェ曲線でデータを近似する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。
