ホームページ バックエンド開発 Python チュートリアル (N-1) 次元配列を使用して N 次元配列に効率的にアクセスするにはどうすればよいですか?

(N-1) 次元配列を使用して N 次元配列に効率的にアクセスするにはどうすればよいですか?

Oct 21, 2024 am 11:57 AM

How to Access N-Dimensional Array with (N-1)-Dimensional Array Efficiently?

(N-1) 次元配列を使用して N 次元配列にアクセスする

N 次元配列 a と (N- 1) 次元配列 idx の場合、一般的なタスクは、idx のインデックスで指定された要素にアクセスすることです。これは、最大値の検索や特定の値の取得などの操作を実行する場合に役立ちます。

高度なインデックス作成を使用したエレガントなソリューション

エレガントなソリューションには、NumPy の ogrid 関数による高度なインデックス作成の使用が含まれます。 :

<code class="python">m, n = a.shape[1:]
I, J = np.ogrid[:m, :n]
a_max_values = a[idx, I, J]
b_max_values = b[idx, I, J]</code>
ログイン後にコピー

これにより、インデックスのメッシュグリッドが作成され、それを使用して a と b にインデックスが付けられ、対応する値を含む配列が得られます。

関数を使用した一般的なケース

任意の指定された軸に対して機能する、より一般的な解決策として、関数を定義できます。

<code class="python">def argmax_to_max(arr, argmax, axis):
    new_shape = list(arr.shape)
    del new_shape[axis]

    grid = np.ogrid[tuple(map(slice, new_shape))]
    grid.insert(axis, argmax)

    return arr[tuple(grid)]</code>
ログイン後にコピー

この関数は、配列、指定された軸に沿ったその argmax、および軸自体を受け取ります。 。次に、メッシュグリッドを構築し、それを使用して対応する要素を抽出します。

カスタム関数による簡素化されたインデックス作成

インデックス作成プロセスをさらに簡略化するために、ヘルパー関数を作成できます。インデックスのグリッドを生成します:

<code class="python">def all_idx(idx, axis):
    grid = np.ogrid[tuple(map(slice, idx.shape))]
    grid.insert(axis, idx)
    return tuple(grid)</code>
ログイン後にコピー

この関数は、入力配列にインデックスを付けるために直接使用できるインデックスのタプルを返します:

<code class="python">axis = 0
a_max_values = a[all_idx(idx, axis=axis)]
b_max_values = b[all_idx(idx, axis=axis)]</code>
ログイン後にコピー

以上が(N-1) 次元配列を使用して N 次元配列に効率的にアクセスするにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットな記事タグ

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

HTMLを解析するために美しいスープを使用するにはどうすればよいですか? HTMLを解析するために美しいスープを使用するにはどうすればよいですか? Mar 10, 2025 pm 06:54 PM

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?

Pythonでの画像フィルタリング Pythonでの画像フィルタリング Mar 03, 2025 am 09:44 AM

Pythonでの画像フィルタリング

Pythonを使用してテキストファイルのZIPF配布を見つける方法 Pythonを使用してテキストファイルのZIPF配布を見つける方法 Mar 05, 2025 am 09:58 AM

Pythonを使用してテキストファイルのZIPF配布を見つける方法

Pythonを使用してPDFドキュメントの操作方法 Pythonを使用してPDFドキュメントの操作方法 Mar 02, 2025 am 09:54 AM

Pythonを使用してPDFドキュメントの操作方法

DjangoアプリケーションでRedisを使用してキャッシュする方法 DjangoアプリケーションでRedisを使用してキャッシュする方法 Mar 02, 2025 am 10:10 AM

DjangoアプリケーションでRedisを使用してキャッシュする方法

TensorflowまたはPytorchで深い学習を実行する方法は? TensorflowまたはPytorchで深い学習を実行する方法は? Mar 10, 2025 pm 06:52 PM

TensorflowまたはPytorchで深い学習を実行する方法は?

Pythonオブジェクトのシリアル化と脱介入:パート1 Pythonオブジェクトのシリアル化と脱介入:パート1 Mar 08, 2025 am 09:39 AM

Pythonオブジェクトのシリアル化と脱介入:パート1

Pythonで独自のデータ構造を実装する方法 Pythonで独自のデータ構造を実装する方法 Mar 03, 2025 am 09:28 AM

Pythonで独自のデータ構造を実装する方法

See all articles