コードの各部分の動作について詳しく説明します:
matplotlib.pyplot はプロットの作成に使用されます。
yahooquery.Ticker は、Yahoo Finance から過去の株式データを取得するために使用されます。
datetime と timedelta は日付の操作に使用されます。
データ処理には pandas が使用されます。
pytz はタイムゾーンを操作するために使用されます。
os はファイル システムの操作に使用されます。
関数パラメータ:
シンボル: 株式ティッカー (例: 「NVDA」)。
n_days: 履歴データが表示される日数。
filename: プロットが保存されるファイルの名前。
timezone: データを表示するためのタイムゾーン。
現在の日付と期間の開始日は、n_days に基づいて計算されます。
yahooquery は、指定された期間の過去の株価データを取得するために使用されます。
利用可能なデータがない場合は、メッセージが出力され、関数は終了します。
データのインデックスが日時形式に変換され、タイムゾーンが設定されます。
週末 (土曜日と日曜日) は除外されます。
終値の変化率が計算されます。
メイン プロットは終値で作成されます。
終値と変化率を示す注釈がプロットに追加されます。
X 軸と Y 軸が構成され、日付がフォーマットされ、グリッド線が追加されます。
取引高の追加プロットが追加され、終値のプラスとマイナスの変化が異なる色で表示されます。
プロットの左下隅と右上隅に透かしが追加されます。
プロットは、指定したファイル名で画像ファイルとして保存され、表示されます。
この関数はティッカー「NVDA」(NVIDIA) で呼び出され、過去 14 日間のデータを表示し、プロットを「output.png」として保存し、GMT タイムゾーンを使用します。
要約すると、このコードは、終値や取引高などの過去の株価データを、変化率やタイムゾーンの考慮事項の注釈とともに視覚的に表現したものを生成します。
import matplotlib.pyplot as plt from yahooquery import Ticker from datetime import datetime, timedelta import matplotlib.dates as mdates import os import pandas as pd import pytz def plot_stock_last_n_days(symbol, n_days=30, filename='stock_plot.png', timezone='UTC'): # Define the date range end_date = datetime.now(pytz.timezone(timezone)) start_date = end_date - timedelta(days=n_days) # Convert dates to the format expected by Yahoo Finance start_date_str = start_date.strftime('%Y-%m-%d') end_date_str = end_date.strftime('%Y-%m-%d') # Fetch historical data for the last n days ticker = Ticker(symbol) historical_data = ticker.history(start=start_date_str, end=end_date_str, interval='1d') # Check if the data is available if historical_data.empty: print("No data available.") return # Ensure the index is datetime for proper plotting and localize to the specified timezone historical_data.index = pd.to_datetime(historical_data.index.get_level_values('date')).tz_localize('UTC').tz_convert(timezone) # Filter out weekends historical_data = historical_data[historical_data.index.weekday < 5] # Calculate percentage changes historical_data['pct_change'] = historical_data['close'].pct_change() * 100 # Ensure the output directory exists output_dir = 'output' if not os.path.exists(output_dir): os.makedirs(output_dir) # Adjust the filename to include the output directory filename = os.path.join(output_dir, filename) # Plotting the closing price fig, ax1 = plt.subplots(figsize=(10, 5)) ax1.plot(historical_data.index, historical_data['close'], label='Close Price', color='blue', marker='o') # Annotate each point with its value and percentage change for i in range(1, len(historical_data)): date = historical_data.index[i] close = historical_data['close'].iloc[i] pct_change = historical_data['pct_change'].iloc[i] color = 'green' if pct_change > 0 else 'red' ax1.text(date, close, f'{close:.2f}\n({pct_change:.2f}%)', fontsize=9, ha='right', color=color) # Set up daily gridlines and print date for every day ax1.xaxis.set_major_locator(mdates.DayLocator(interval=1)) ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) ax1.set_xlabel('Date') ax1.set_ylabel('Price (USD)') ax1.set_title(f'{symbol} Stock Price - Last {n_days} Days') ax1.legend(loc='upper left') ax1.grid(True) ax1.tick_params(axis='x', rotation=80) fig.tight_layout() # Adding the trading volume plot ax2 = ax1.twinx() calm_green = (0.6, 1, 0.6) # Calm green color calm_red = (1, 0.6, 0.6) # Calm red color colors = [calm_green if historical_data['close'].iloc[i] > historical_data['open'].iloc[i] else calm_red for i in range(len(historical_data))] ax2.bar(historical_data.index, historical_data['volume'], color=colors, alpha=0.5, width=0.8) ax2.set_ylabel('Volume') ax2.tick_params(axis='y') # Format y-axis for volume in millions def millions(x, pos): 'The two args are the value and tick position' return '%1.0fM' % (x * 1e-6) ax2.yaxis.set_major_formatter(plt.FuncFormatter(millions)) # Adjust the visibility and spacing of the volume axis fig.subplots_adjust(right=0.85) ax2.spines['right'].set_position(('outward', 60)) ax2.yaxis.set_label_position('right') ax2.yaxis.set_ticks_position('right') # Add watermarks plt.text(0.01, 0.01, 'medium.com/@dmitry.romanoff', fontsize=12, color='grey', ha='left', va='bottom', alpha=0.5, transform=plt.gca().transAxes) plt.text(0.99, 0.99, 'medium.com/@dmitry.romanoff', fontsize=12, color='grey', ha='right', va='top', alpha=0.5, transform=plt.gca().transAxes) # Save the plot as an image file plt.savefig(filename) plt.show() # Example usage plot_stock_last_n_days('NVDA', n_days=14, filename='output.png', timezone='GMT')
以上が過去 n 日間の株価チャートを生成する Python コード。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。