Python/SciPy のピーク検出アルゴリズムを使用してデータのピークを見つける方法
Python/SciPy のピーク検出アルゴリズム
データ内のピークの検出は、信号処理と解析における一般的なタスクです。ピーク検出アルゴリズムを手動で実装することも可能ですが、多くの場合、既存のライブラリ関数を使用する方が便利です。
そのような関数の 1 つが scipy.signal.find_peaks です。この関数は信号を入力として受け取り、ピークのインデックスを返します。 1D 信号と 2D 信号の両方に使用できます。
find_peaks には、その動作を制御する多数のパラメーターがあります。これらのパラメータには次のものが含まれます。
- distance: ピーク間の最小距離。このパラメータにより、孤立したピークのみが返されるようになります。
- threshold: ピークの最小振幅。このパラメータにより、重要なピークのみが返されるようになります。
- width: ピークの幅。このパラメータは、ノイズを拒否したり、複数のピークを 1 つのピークにグループ化するために使用できます。
これらのパラメータに加えて、find_peaks には高さやプロミネンスなどの高度なパラメータも多数あります。これらのパラメーターを使用すると、特定のアプリケーション向けにピーク検出アルゴリズムを微調整できます。
find_peaks を使用するには、信号を最初の引数として関数を呼び出すだけです。この関数は、ピークのインデックスを含むタプルと、高度なパラメーターの値を含む辞書を返します。
find_peaks を使用して 1D 信号内のピークを検索する方法の例を次に示します。
<code class="python">import numpy as np from scipy.signal import find_peaks x = np.sin(2*np.pi*100*np.arange(1000)/1000) peaks, _ = find_peaks(x) plt.plot(x) plt.plot(peaks, x[peaks], "xr") plt.show()</code>
このコードは、信号と検出されたピークをプロットします。ご覧のとおり、find_peaks 関数は信号内のピークを正確に識別できます。
find_peaks は、幅広いアプリケーションに使用できる多用途で強力なピーク検出アルゴリズムです。使いやすく、ピーク検出プロセスを微調整するための高度なパラメータが多数用意されています。
以上がPython/SciPy のピーク検出アルゴリズムを使用してデータのピークを見つける方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

Investing.comの反クラウリング戦略を理解する多くの人々は、Investing.com(https://cn.investing.com/news/latest-news)からのニュースデータをクロールしようとします。
