SQL でバイナリ文字列のハミング ディスタンスを効率的に計算するにはどうすればよいですか?
SQL のバイナリ文字列のハミング距離
背景と問題の説明
コンピュータ サイエンスの基本概念であるハミング距離は、バイナリ文字列間の相違度を測定します。異なるビットの数を数えることによって 2 つのバイナリ文字列を抽出します。 SQL では、類似したデータ ポイントや最近傍のデータ ポイントを見つけるなど、さまざまな目的でハミング距離を計算する必要があります。
課題
開発者は、ハミング距離を計算しようとしているときにハードルに遭遇します。テーブルのバイナリ列のエントリと指定された値の間。この問題は、SQL の整数ベースの演算子と関数に固有の制限があり、バイナリ文字列と互換性がありません。
解決策の検討
1.部分文字列と整数の演算アプローチ
開発者は、バイナリ文字列を手動で部分文字列に分割し、それぞれを整数に変換して、部分文字列ごとにハミング距離を計算することを検討しています。ただし、このアプローチは複雑で非効率的で、洗練されていません。
2.複数の BIGINT 列へのハッシュの保存
その後の研究により、それぞれ 8 バイトの部分文字列を表す 4 つの BIGINT 列にハッシュを保存すると、ハミング距離の計算が大幅に高速化されることが明らかになりました。開発者は、各部分文字列のハミング距離を結合するカスタム関数を作成します。
関数の実装
<code class="sql">CREATE FUNCTION HAMMINGDISTANCE( A0 BIGINT, A1 BIGINT, A2 BIGINT, A3 BIGINT, B0 BIGINT, B1 BIGINT, B2 BIGINT, B3 BIGINT ) RETURNS INT DETERMINISTIC RETURN BIT_COUNT(A0 ^ B0) + BIT_COUNT(A1 ^ B1) + BIT_COUNT(A2 ^ B2) + BIT_COUNT(A3 ^ B3);</code>
このアプローチは、バイナリ列ベースと比較して、テストで 100 倍を超えるパフォーマンスの向上を示しています。
文字列変換を使用した代替アプローチ
代替アプローチでは、開発者はバイナリの部分文字列を 16 進数値に変換し、さらにそれらを 10 進数値に変換してから、ビットごとの XOR とハミング距離を計算します。 BIT_COUNT。ただし、このアプローチにはいくつかの変換手順が含まれるため、BIGINT 列ベースの方法よりも効率が低くなります。
結論
複数の BIGINT 列のカスタマイズと使用により、次のような高速かつ効率的なソリューションが提供されます。 SQL でバイナリ文字列のハミング距離を計算します。このアプローチは、パフォーマンスが重要になる大規模なデータセットを扱う場合に特に有利です。
以上がSQL でバイナリ文字列のハミング ディスタンスを効率的に計算するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











WebアプリケーションにおけるMySQLの主な役割は、データを保存および管理することです。 1.MYSQLは、ユーザー情報、製品カタログ、トランザクションレコード、その他のデータを効率的に処理します。 2。SQLクエリを介して、開発者はデータベースから情報を抽出して動的なコンテンツを生成できます。 3.MYSQLは、クライアントサーバーモデルに基づいて機能し、許容可能なクエリ速度を確保します。

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

他のプログラミング言語と比較して、MySQLは主にデータの保存と管理に使用されますが、Python、Java、Cなどの他の言語は論理処理とアプリケーション開発に使用されます。 MySQLは、データ管理のニーズに適した高性能、スケーラビリティ、およびクロスプラットフォームサポートで知られていますが、他の言語は、データ分析、エンタープライズアプリケーション、システムプログラミングなどのそれぞれの分野で利点があります。

MySQLの基本操作には、データベース、テーブルの作成、およびSQLを使用してデータのCRUD操作を実行することが含まれます。 1.データベースの作成:createdatabasemy_first_db; 2。テーブルの作成:createTableBooks(idintauto_incrementprimarykey、titlevarchary(100)notnull、authorvarchar(100)notnull、published_yearint); 3.データの挿入:InsertIntoBooks(タイトル、著者、公開_year)VA

Innodbbufferpoolは、データをキャッシュしてページをインデックス作成することにより、ディスクI/Oを削減し、データベースのパフォーマンスを改善します。その作業原則には次のものが含まれます。1。データ読み取り:Bufferpoolのデータを読む。 2。データの書き込み:データを変更した後、bufferpoolに書き込み、定期的にディスクに更新します。 3.キャッシュ管理:LRUアルゴリズムを使用して、キャッシュページを管理します。 4.読みメカニズム:隣接するデータページを事前にロードします。 BufferPoolのサイジングと複数のインスタンスを使用することにより、データベースのパフォーマンスを最適化できます。

MySQLは、Webアプリケーションやコンテンツ管理システムに適しており、オープンソース、高性能、使いやすさに人気があります。 1)PostgreSQLと比較して、MySQLは簡単なクエリと高い同時読み取り操作でパフォーマンスが向上します。 2)Oracleと比較して、MySQLは、オープンソースと低コストのため、中小企業の間でより一般的です。 3)Microsoft SQL Serverと比較して、MySQLはクロスプラットフォームアプリケーションにより適しています。 4)MongoDBとは異なり、MySQLは構造化されたデータおよびトランザクション処理により適しています。

MySQLは、テーブル構造とSQLクエリを介して構造化されたデータを効率的に管理し、外部キーを介してテーブル間関係を実装します。 1.テーブルを作成するときにデータ形式と入力を定義します。 2。外部キーを使用して、テーブル間の関係を確立します。 3。インデックス作成とクエリの最適化により、パフォーマンスを改善します。 4.データベースを定期的にバックアップおよび監視して、データのセキュリティとパフォーマンスの最適化を確保します。

MySQLは、データストレージ、管理、分析に適した強力なオープンソースデータベース管理システムであるため、学習する価値があります。 1)MySQLは、SQLを使用してデータを操作するリレーショナルデータベースであり、構造化されたデータ管理に適しています。 2)SQL言語はMySQLと対話するための鍵であり、CRUD操作をサポートします。 3)MySQLの作業原則には、クライアント/サーバーアーキテクチャ、ストレージエンジン、クエリオプティマイザーが含まれます。 4)基本的な使用には、データベースとテーブルの作成が含まれ、高度な使用にはJoinを使用してテーブルの参加が含まれます。 5)一般的なエラーには、構文エラーと許可の問題が含まれ、デバッグスキルには、構文のチェックと説明コマンドの使用が含まれます。 6)パフォーマンスの最適化には、インデックスの使用、SQLステートメントの最適化、およびデータベースの定期的なメンテナンスが含まれます。
