ホームページ バックエンド開発 Python チュートリアル **Flatten と Ravel: どの NumPy 関数をいつ使用する必要がありますか?**

**Flatten と Ravel: どの NumPy 関数をいつ使用する必要がありますか?**

Oct 25, 2024 pm 02:12 PM

**Flatten vs. Ravel: When Should I Use Which NumPy Function?**

Numpy の Flatten 関数と Ravel 関数の違いを理解する

NumPy で多次元配列を扱う場合、変換が必要なシナリオに遭遇する可能性があります。それらを一次元の形に変換します。ここで flatten() 関数と ravel() 関数が登場します。ただし、結果が似ているにもかかわらず、これらは異なるメソッドを採用しており、パフォーマンスとメモリ管理に独自の影響を及ぼします。

類似点:

flatten() と ravel() はどちらも生成します。提供されたコード例で示されているように、フラット化された配列:

import numpy as np
y = np.array(((1,2,3),(4,5,6),(7,8,9)))
print(y.flatten())
[1   2   3   4   5   6   7   8   9]
print(y.ravel())
[1   2   3   4   5   6   7   8   9]
ログイン後にコピー

Differences:

  • Memory Allocation: flatten()は常に元の配列のコピーを作成しますが、ravel() は可能な限り元の配列のビューを生成します。これは、 flatten() から返された配列を変更しても元の配列には影響しないのに対し、ravel() から返された配列に加えられた変更は元の配列に反映されることを意味します。
  • パフォーマンス: Ravel() はメモリのコピーを回避し、連続したビューを使用するため、 flatten() よりも高速になる傾向があります。これは、大きな配列を扱う場合に有利です。
  • ストライド処理: reshape((-1,)) は、配列を平坦化するための別のオプションを提供しますが、次のようなコピーではなくビューを返します。平らにする()。ただし、連続性が保証されない可能性があり、パフォーマンスに影響を与える可能性があります。

結論:

flatten() と ravel() の間の微妙なニュアンスを理解することで、準備が整います。各機能をいつ使用するかについて情報に基づいた決定を下すための知識が必要です。元の配列を保持することが重要な場合、またはさらなる処理のために新しいコピーを作成する必要がある場合は、 flatten() が推奨される選択肢です。一方、速度が重要であり、平坦化された配列の変更が許容される場合、ravel() はより効率的なソリューションを提供します。

以上が**Flatten と Ravel: どの NumPy 関数をいつ使用する必要がありますか?**の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:比較されたアプリケーションとユースケース Python vs. C:比較されたアプリケーションとユースケース Apr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間でどのくらいのPythonを学ぶことができますか? 2時間でどのくらいのPythonを学ぶことができますか? Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles