「np.ix_」を使用して 2 つのインデックスのリストを持つ 2D NumPy 配列にインデックスを付ける方法
2 つのインデックスのリストを使用して 2D Numpy 配列にインデックスを付ける
問題ステートメント
2D Numpy 配列にインデックスを付ける2 つの別々のインデックスのリストは、1 つのインデックスのリストを使用するほど単純ではありません。目的のインデックス付き選択を実現するには配列のブロードキャストと再形成が必要になるため、大規模な配列を扱う場合は困難になる可能性があります。
np.ix_ とブロードキャストを使用した解決策
Numpy の np.ix_ 関数を使用すると、相互にブロードキャストして目的のインデックス付けパターンを実現できるインデックス付け配列のタプルを作成できます。このアプローチにより、可読性が維持され、コードの最適化が促進されます。
np.ix_ を使用してインデックス付けを実行するには、次の手順に従います。
- 行インデックスと列インデックスを持つ np.ix_ を使用して 2 つのブロードキャスト配列を作成します。 .
- これらのインデックス配列を使用して、元の配列内の目的の行と列を選択します。
コード例
以下コードは、インデックスベースの選択に np.ix_ を使用する方法を示しています:
<code class="python">import numpy as np # Create indices row_indices = [4, 2, 18, 16, 7, 19, 4] col_indices = [1, 2] # Create broadcasting arrays index_tuples = np.ix_(row_indices, col_indices) # Perform indexing x_indexed = x[index_tuples]</code>
出力例
>>> x_indexed array([[76, 56], [70, 47], [46, 95], [76, 56], [92, 46]])
追加の考慮事項
代替構文:
np.ix_ を使用する代替構文は、特に指定がない限り、: 演算子を使用して軸に沿ったすべてのインデックスを指定することです。
ブロードキャスト:
ブロードキャストは入力配列の軸に沿って発生することに注意することが重要です。したがって、各軸に沿ったインデックス配列のサイズは、入力配列の対応する次元と一致する必要があります。
最適化:
np.ix_ とブロードキャストを使用したインデックス作成により、パフォーマンスが大幅に向上します。インデックスの反復処理やブール マスクの使用と比較します。これは、大規模な配列を操作する場合に特に有利です。
以上が「np.ix_」を使用して 2 つのインデックスのリストを持つ 2D NumPy 配列にインデックスを付ける方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
