ハイパースレッディングのサポートで物理プロセッサとコアを正確に検出するにはどうすればよいですか?
ハイパースレッディング サポートによる物理プロセッサとコアの検出
概要
マルチスレッド アプリケーションでは、利用可能な物理的リソースに合わせてスレッドの数を調整してパフォーマンスを最適化することが重要です。プロセッサまたはコア。これを実現するには、特にハイパースレッディングが関係する場合、物理コアと仮想コアを区別することが重要です。この記事では、「ハイパー スレッディングの潜在的な存在を考慮して、物理プロセッサとコアの数を正確に検出するにはどうすればよいですか?
ハイパー スレッディングについて
」という質問に対処します。ハイパースレッディングは、物理コア内に仮想コアを作成するテクノロジーです。これにより、単一の物理コアで複数のスレッドを処理できるようになり、全体のスレッド数が効果的に増加します。ただし、一般に物理コアは仮想コアと比較して優れたパフォーマンスを提供することに注意することが重要です。
検出方法
物理プロセッサとコアの数を正確に検出するには、次の手順を実行します。 CPUID 命令 (x86 および x64 プロセッサで利用可能) を利用できます。この命令は、次のようなプロセッサに関するベンダー固有の情報を提供します。
- CPU Vendor: これは、プロセッサの製造元 (Intel、AMD など) を識別します。
- CPU 機能: これには、ハイパースレッディングのサポートなどを示すビット マスクが含まれます。
- 論理コア数: これは、仮想コアを含むプロセッサー内のコアの合計数を表します。
- 物理コア数: これ物理コアの数を示します。
実装
次の C コードは、物理プロセッサとコアを検出するためのプラットフォームに依存しない方法を提供します。ハイパースレッディング:
<code class="cpp">#include <iostream> #include <stdint.h> using namespace std; // Execute CPUID instruction void cpuID(uint32_t functionCode, uint32_t* registers) { #ifdef _WIN32 __cpuid((int*)registers, (int)functionCode); #else asm volatile( "cpuid" : "=a" (registers[0]), "=b" (registers[1]), "=c" (registers[2]), "=d" (registers[3]) : "a" (functionCode), "c" (0) ); #endif } int main() { uint32_t registers[4]; uint32_t logicalCoreCount, physicalCoreCount; // Get vendor cpuID(0, registers); string vendor = (char*)(®isters[1]); // Get CPU features cpuID(1, registers); uint32_t cpuFeatures = registers[3]; // Get logical core count cpuID(1, registers); logicalCoreCount = (registers[1] >> 16) & 0xff; cout << "Logical cores: " << logicalCoreCount << endl; // Get physical core count physicalCoreCount = logicalCoreCount; if (vendor == "GenuineIntel") { // Intel cpuID(4, registers); physicalCoreCount = ((registers[0] >> 26) & 0x3f) + 1; } else if (vendor == "AuthenticAMD") { // AMD cpuID(0x80000008, registers); physicalCoreCount = ((unsigned)(registers[2] & 0xff)) + 1; } cout << "Physical cores: " << physicalCoreCount << endl; // Check hyper-threading bool hyperThreads = cpuFeatures & (1 << 28) && (physicalCoreCount < logicalCoreCount); cout << "Hyper-threads: " << (hyperThreads ? "true" : "false") << endl; return 0; }</code>
結果
このコードは、異なる Intel プロセッサと AMD プロセッサで実行されると、次のような出力を提供します:
Intel Core i5-7200U (物理コア 2 個、論理コア 4 個)コア):
Logical cores: 4 Physical cores: 2 Hyper-threads: true
AMD Ryzen 7 1700X (物理コア 8 個、論理コア 16 個):
Logical cores: 16 Physical cores: 8 Hyper-threads: true
結論
この検出方法を実装することで、開発者はマルチスレッド アプリケーションのスレッド数を利用可能な物理プロセッサとコアに正確に調整し、Windows、Mac、Linux システムの両方でパフォーマンスを最適化できます。これにより、基盤となるハードウェア リソースが効率的に利用され、パフォーマンスが向上し、実行時間が短縮されます。
以上がハイパースレッディングのサポートで物理プロセッサとコアを正確に検出するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











C#とCの歴史と進化はユニークであり、将来の見通しも異なります。 1.Cは、1983年にBjarnestrostrupによって発明され、オブジェクト指向のプログラミングをC言語に導入しました。その進化プロセスには、C 11の自動キーワードとラムダ式の導入など、複数の標準化が含まれます。C20概念とコルーチンの導入、将来のパフォーマンスとシステムレベルのプログラミングに焦点を当てます。 2.C#は2000年にMicrosoftによってリリースされました。CとJavaの利点を組み合わせて、その進化はシンプルさと生産性に焦点を当てています。たとえば、C#2.0はジェネリックを導入し、C#5.0は非同期プログラミングを導入しました。これは、将来の開発者の生産性とクラウドコンピューティングに焦点を当てます。

C#とCおよび開発者の経験の学習曲線には大きな違いがあります。 1)C#の学習曲線は比較的フラットであり、迅速な開発およびエンタープライズレベルのアプリケーションに適しています。 2)Cの学習曲線は急勾配であり、高性能および低レベルの制御シナリオに適しています。

Cは、サードパーティライブラリ(TinyXML、PUGIXML、XERCES-Cなど)を介してXMLと相互作用します。 1)ライブラリを使用してXMLファイルを解析し、それらをC処理可能なデータ構造に変換します。 2)XMLを生成するときは、Cデータ構造をXML形式に変換します。 3)実際のアプリケーションでは、XMLが構成ファイルとデータ交換に使用されることがよくあり、開発効率を向上させます。

Cでの静的分析の適用には、主にメモリ管理の問題の発見、コードロジックエラーの確認、およびコードセキュリティの改善が含まれます。 1)静的分析では、メモリリーク、ダブルリリース、非初期化ポインターなどの問題を特定できます。 2)未使用の変数、死んだコード、論理的矛盾を検出できます。 3)カバー性などの静的分析ツールは、バッファーオーバーフロー、整数のオーバーフロー、安全でないAPI呼び出しを検出して、コードセキュリティを改善します。

Cは、現代のプログラミングにおいて依然として重要な関連性を持っています。 1)高性能および直接的なハードウェア操作機能により、ゲーム開発、組み込みシステム、高性能コンピューティングの分野で最初の選択肢になります。 2)豊富なプログラミングパラダイムとスマートポインターやテンプレートプログラミングなどの最新の機能は、その柔軟性と効率を向上させます。学習曲線は急ですが、その強力な機能により、今日のプログラミングエコシステムでは依然として重要です。

CでChronoライブラリを使用すると、時間と時間の間隔をより正確に制御できます。このライブラリの魅力を探りましょう。 CのChronoライブラリは、時間と時間の間隔に対処するための最新の方法を提供する標準ライブラリの一部です。 Time.HとCtimeに苦しんでいるプログラマーにとって、Chronoは間違いなく恩恵です。コードの読みやすさと保守性を向上させるだけでなく、より高い精度と柔軟性も提供します。基本から始めましょう。 Chronoライブラリには、主に次の重要なコンポーネントが含まれています。STD:: Chrono :: System_Clock:現在の時間を取得するために使用されるシステムクロックを表します。 STD :: Chron

Cの将来は、並列コンピューティング、セキュリティ、モジュール化、AI/機械学習に焦点を当てます。1)並列コンピューティングは、コルーチンなどの機能を介して強化されます。 2)セキュリティは、より厳格なタイプのチェックとメモリ管理メカニズムを通じて改善されます。 3)変調は、コード組織とコンパイルを簡素化します。 4)AIと機械学習は、数値コンピューティングやGPUプログラミングサポートなど、CにComply Coveに適応するように促します。

c isnotdying; it'sevolving.1)c relelevantdueToitsversitileSileSixivisityinperformance-criticalApplications.2)thelanguageSlikeModulesandCoroutoUtoimveUsablive.3)despiteChallen
