目次
マルチプロセッシングにおける共有メモリ オブジェクト: コスト分析
Copy-On-Write Fork() の利用
配列を共有メモリにパッキング
書き込み可能なオブジェクトの共有
オーバーヘッドの分析
マルチプロセッシングの代替手段
ホームページ バックエンド開発 Python チュートリアル 共有メモリはどのようにして大きなデータ オブジェクトのマルチプロセッシングを最適化できるのでしょうか?

共有メモリはどのようにして大きなデータ オブジェクトのマルチプロセッシングを最適化できるのでしょうか?

Nov 02, 2024 pm 04:24 PM

How Can Shared Memory Optimize Multiprocessing for Large Data Objects?

マルチプロセッシングにおける共有メモリ オブジェクト: コスト分析

マルチプロセッシングでは、多くの場合、並列タスクを実行するために複数のプロセスを作成する必要があります。大きなメモリ内オブジェクトを処理する場合、これらのプロセス間でのデータのコピーと共有に関連するオーバーヘッドを最小限に抑えることが不可欠になります。この記事では、共有メモリを使用して大規模な読み取り専用配列と任意の Python オブジェクトを効率的に共有する方法について説明します。

Copy-On-Write Fork() の利用

ほとんどの UNIX ベースのオペレーティング システムはコピーを使用します。 -on-write fork() セマンティクス。これは、新しいプロセスが作成されると、最初は親プロセスと同じメモリ空間を共有することを意味します。この共有メモリ内のデータが変更されない限り、追加のメモリを消費することなくすべてのプロセスからアクセスできます。

配列を共有メモリにパッキング

大きな読み取り専用配列の場合、最も効率的なアプローチは、NumPy または配列を使用して効率的な配列構造にそれらをパックすることです。このデータは、multiprocessing.Array を使用して共有メモリに配置できます。この共有配列を関数に渡すことで、コピーの必要がなくなり、すべてのプロセスがデータに直接アクセスできるようになります。

書き込み可能なオブジェクトの共有

書き込み可能な共有オブジェクトが必要な場合は、データの整合性を確保するには、何らかの形式の同期またはロックを採用する必要があります。マルチプロセッシングには 2 つのオプションがあります:

  • 共有メモリ: 単純な値、配列、または ctypes オブジェクトに適しています。
  • マネージャー プロキシ: Aプロセスは、マネージャーが他のプロセスからのアクセスを調停している間、メモリを保持します。このアプローチでは、任意の Python オブジェクトを共有できますが、オブジェクトのシリアル化と逆シリアル化によるパフォーマンスの低下が伴います。

オーバーヘッドの分析

一方、copy-on-write fork() は一般にオーバーヘッドを削減します。テストでは、マルチプロセッシングを使用した配列の構築と関数の実行の間に大きな時間差があることが示されています。これは、配列のコピーが回避されている一方で、他の要因がオーバーヘッドに寄与している可能性があることを示唆しています。オーバーヘッドは配列のサイズとともに増加し、メモリ関連の非効率性が潜在的にあることを示しています。

マルチプロセッシングの代替手段

マルチプロセッシングが特定のニーズを満たさない場合は、他にも多数の並列処理ライブラリが利用可能です。 Pythonで。各ライブラリは共有メモリを処理するための独自のアプローチを提供しており、アプリケーションにどれが最も適しているかを検討する価値があります。

以上が共有メモリはどのようにして大きなデータ オブジェクトのマルチプロセッシングを最適化できるのでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングのためのPython:詳細な外観 科学コンピューティングのためのPython:詳細な外観 Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発用のPython:主要なアプリケーション Web開発用のPython:主要なアプリケーション Apr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

See all articles