ホームページ バックエンド開発 Golang GitLab CI/CD および SFTP 統合のための Terraform を使用した Lambda の実装、Go の S Databricks

GitLab CI/CD および SFTP 統合のための Terraform を使用した Lambda の実装、Go の S Databricks

Nov 03, 2024 am 07:50 AM

Implementando uma Lambda com GitLab CI/CD e Terraform para Integração SFTP, S Databricks em Go

Databricks のプロセス自動化によるコスト削減

クライアントでは、Databricks で実行されるプロセスのコストを削減する必要がありました。 Databricks が担当した機能の 1 つは、さまざまな SFTP からファイルを収集し、それらを解凍して Data Lake に配置することでした。

データ ワークフローの自動化は、現代のデータ エンジニアリングにおいて重要な要素です。この記事では、GitLab CI/CD と Terraform を使用して、Go アプリケーションが SFTP サーバーに接続し、ファイルを収集して Amazon S3 に保存し、最終的に Databricks でジョブをトリガーできるようにする AWS Lambda 関数を作成する方法を説明します。このエンドツーエンドのプロセスは、効率的なデータ統合と自動化に依存するシステムにとって不可欠です。

この記事に必要なもの

  • プロジェクトのリポジトリを持つ GitLab アカウント。
  • Lambda、S3、および IAM リソースを作成する権限を持つ AWS アカウント。
  • ジョブを作成および実行する権限を持つ Databricks アカウント。
  • Go、Terraform、GitLab CI/CD の基本的な知識。

ステップ 1: Go アプリケーションの準備

まず、SFTP サーバーに接続してファイルを収集する Go アプリケーションを作成します。 SFTP 接続を確立するには github.com/pkg/sftp などのパッケージを使用し、AWS S3 サービスと対話するには github.com/aws/aws-sdk-go などのパッケージを使用します。

package main

import (
 "fmt"
 "log"
 "os"
 "path/filepath"

 "github.com/pkg/sftp"
 "golang.org/x/crypto/ssh"
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/s3/s3manager"
)

func main() {
 // Configuração do cliente SFTP
 user := "seu_usuario_sftp"
 pass := "sua_senha_sftp"
 host := "endereco_sftp:22"
 config := &ssh.ClientConfig{
  User: user,
  Auth: []ssh.AuthMethod{
   ssh.Password(pass),
  },
  HostKeyCallback: ssh.InsecureIgnoreHostKey(),
 }

 // Conectar ao servidor SFTP
 conn, err := ssh.Dial("tcp", host, config)
 if err != nil {
  log.Fatal(err)
 }
 client, err := sftp.NewClient(conn)
 if err != nil {
  log.Fatal(err)
 }
 defer client.Close()

 // Baixar arquivos do SFTP
 remoteFilePath := "/path/to/remote/file"
 localDir := "/path/to/local/dir"
 localFilePath := filepath.Join(localDir, filepath.Base(remoteFilePath))
 dstFile, err := os.Create(localFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer dstFile.Close()

 srcFile, err := client.Open(remoteFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer srcFile.Close()

 if _, err := srcFile.WriteTo(dstFile); err != nil {
  log.Fatal(err)
 }

 fmt.Println("Arquivo baixado com sucesso:", localFilePath)

 // Configuração do cliente S3
 sess := session.Must(session.NewSession(&aws.Config{
  Region: aws.String("us-west-2"),
 }))
 uploader := s3manager.NewUploader(sess)

 // Carregar arquivo para o S3
 file, err := os.Open(localFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer file.Close()

 _, err = uploader.Upload(&s3manager.UploadInput{
  Bucket: aws.String("seu-bucket-s3"),
  Key:    aws.String(filepath.Base(localFilePath)),
  Body:   file,
 })
 if err != nil {
  log.Fatal("Falha ao carregar arquivo para o S3:", err)
 }

 fmt.Println("Arquivo carregado com sucesso no S3")
}
ログイン後にコピー
ログイン後にコピー

ステップ 2: Terraform の構成

Terraform は、Lambda 関数と必要なリソースを AWS にプロビジョニングするために使用されます。 Lambda 関数、IAM ポリシー、S3 バケットの作成に必要な設定を含む main.tf ファイルを作成します。

provider "aws" {
  region = "us-east-1"
}

resource "aws_iam_role" "lambda_execution_role" {
  name = "lambda_execution_role"

  assume_role_policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = "sts:AssumeRole",
        Effect = "Allow",
        Principal = {
          Service = "lambda.amazonaws.com"
        },
      },
    ]
  })
}

resource "aws_iam_policy" "lambda_policy" {
  name        = "lambda_policy"
  description = "A policy that allows a lambda function to access S3 and SFTP resources"

  policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = [
          "s3:ListBucket",
          "s3:GetObject",
          "s3:PutObject",
        ],
        Effect = "Allow",
        Resource = [
          "arn:aws:s3:::seu-bucket-s3",
          "arn:aws:s3:::seu-bucket-s3/*",
        ],
      },
    ]
  })
}

resource "aws_iam_role_policy_attachment" "lambda_policy_attachment" {
  role       = aws_iam_role.lambda_execution_role.name
  policy_arn = aws_iam_policy.lambda_policy.arn
}

resource "aws_lambda_function" "sftp_lambda" {
  function_name = "sftp_lambda_function"

  s3_bucket = "seu-bucket-s3-com-codigo-lambda"
  s3_key    = "sftp-lambda.zip"

  handler = "main"
  runtime = "go1.x"

  role = aws_iam_role.lambda_execution_role.arn

  environment {
    variables = {
      SFTP_HOST     = "endereco_sftp",
      SFTP_USER     = "seu_usuario_sftp",
      SFTP_PASSWORD = "sua_senha_sftp",
      S3_BUCKET     = "seu-bucket-s3",
    }
  }
}

resource "aws_s3_bucket" "s3_bucket" {
  bucket = "seu-bucket-s3"
  acl    = "private"
}
ログイン後にコピー
ログイン後にコピー

ステップ 3: GitLab CI/CD の構成

GitLab で、.gitlab-ci.yml ファイルに CI/CD パイプラインを定義します。このパイプラインには、Go アプリケーションをテストするステップ、Terraform を実行してインフラストラクチャをプロビジョニングするステップ、および必要に応じてクリーンアップするステップが含まれている必要があります。

stages:
  - test
  - build
  - deploy

variables:
  S3_BUCKET: "seu-bucket-s3"
  AWS_DEFAULT_REGION: "us-east-1"
  TF_VERSION: "1.0.0"

before_script:
  - 'which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )'
  - eval $(ssh-agent -s)
  - echo "$PRIVATE_KEY" | tr -d '\r' | ssh-add -
  - mkdir -p ~/.ssh
  - chmod 700 ~/.ssh
  - ssh-keyscan -H 'endereco_sftp' >> ~/.ssh/known_hosts

test:
  stage: test
  image: golang:1.18
  script:
    - go test -v ./...

build:
  stage: build
  image: golang:1.18
  script:
    - go build -o myapp
    - zip -r sftp-lambda.zip myapp
  artifacts:
    paths:
      - sftp-lambda.zip
  only:
    - master

deploy:
  stage: deploy
  image: hashicorp/terraform:$TF_VERSION
  script:
    - terraform init
    - terraform apply -auto-approve
  only:
    - master
  environment:
    name: production
ログイン後にコピー
ログイン後にコピー

ステップ 4: Databricks との統合

S3 にファイルをアップロードした後、Lambda 関数は Databricks でジョブをトリガーする必要があります。これは、Databricks API を使用して既存のジョブを起動することで実行できます。

package main

import (
 "bytes"
 "encoding/json"
 "fmt"
 "net/http"
)

// Estrutura para a requisição de iniciar um job no Databricks
type DatabricksJobRequest struct {
 JobID int `json:"job_id"`
}

// Função para acionar um job no Databricks
func triggerDatabricksJob(databricksInstance string, token string, jobID int) error {
 url := fmt.Sprintf("https://%s/api/2.0/jobs/run-now", databricksInstance)
 requestBody, _ := json.Marshal(DatabricksJobRequest{JobID: jobID})
 req, err := http.NewRequest("POST", url, bytes.NewBuffer(requestBody))
 if err != nil {
  return err
 }

 req.Header.Set("Content-Type", "application/json")
 req.Header.Set("Authorization", fmt.Sprintf("Bearer %s", token))

 client := &http.Client{}
 resp, err := client.Do(req)
 if err != nil {
  return err
 }
 defer resp.Body.Close()

 if resp.StatusCode != http.StatusOK {
  return fmt.Errorf("Failed to trigger Databricks job, status code: %d", resp.StatusCode)
 }

 return nil
}

func main() {
 // ... (código existente para conectar ao SFTP e carregar no S3)

 // Substitua pelos seus valores reais
 databricksInstance := "your-databricks-instance"
 databricksToken := "your-databricks-token"
 databricksJobID := 123 // ID do job que você deseja acionar

 // Acionar o job no Databricks após o upload para o S3
 err := triggerDatabricksJob(databricksInstance, databricksToken, databricksJobID)
 if err != nil {
  log.Fatal("Erro ao acionar o job do Databricks:", err)
 }

 fmt.Println("Job do Databricks acionado com sucesso")
}
ログイン後にコピー

ステップ 5: パイプラインの実行

パイプラインを実行するためにコードを GitLab リポジトリにプッシュします。すべての手順が正常に完了し、Lambda 関数が動作し、S3 および Databricks と正しく対話していることを確認してください。

完全なコードと .gitlab-ci.yml ファイルを設定したら、次の手順に従ってパイプラインを実行できます。

  • コードを GitLab リポジトリにプッシュします。
package main

import (
 "fmt"
 "log"
 "os"
 "path/filepath"

 "github.com/pkg/sftp"
 "golang.org/x/crypto/ssh"
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/s3/s3manager"
)

func main() {
 // Configuração do cliente SFTP
 user := "seu_usuario_sftp"
 pass := "sua_senha_sftp"
 host := "endereco_sftp:22"
 config := &ssh.ClientConfig{
  User: user,
  Auth: []ssh.AuthMethod{
   ssh.Password(pass),
  },
  HostKeyCallback: ssh.InsecureIgnoreHostKey(),
 }

 // Conectar ao servidor SFTP
 conn, err := ssh.Dial("tcp", host, config)
 if err != nil {
  log.Fatal(err)
 }
 client, err := sftp.NewClient(conn)
 if err != nil {
  log.Fatal(err)
 }
 defer client.Close()

 // Baixar arquivos do SFTP
 remoteFilePath := "/path/to/remote/file"
 localDir := "/path/to/local/dir"
 localFilePath := filepath.Join(localDir, filepath.Base(remoteFilePath))
 dstFile, err := os.Create(localFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer dstFile.Close()

 srcFile, err := client.Open(remoteFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer srcFile.Close()

 if _, err := srcFile.WriteTo(dstFile); err != nil {
  log.Fatal(err)
 }

 fmt.Println("Arquivo baixado com sucesso:", localFilePath)

 // Configuração do cliente S3
 sess := session.Must(session.NewSession(&aws.Config{
  Region: aws.String("us-west-2"),
 }))
 uploader := s3manager.NewUploader(sess)

 // Carregar arquivo para o S3
 file, err := os.Open(localFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer file.Close()

 _, err = uploader.Upload(&s3manager.UploadInput{
  Bucket: aws.String("seu-bucket-s3"),
  Key:    aws.String(filepath.Base(localFilePath)),
  Body:   file,
 })
 if err != nil {
  log.Fatal("Falha ao carregar arquivo para o S3:", err)
 }

 fmt.Println("Arquivo carregado com sucesso no S3")
}
ログイン後にコピー
ログイン後にコピー
provider "aws" {
  region = "us-east-1"
}

resource "aws_iam_role" "lambda_execution_role" {
  name = "lambda_execution_role"

  assume_role_policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = "sts:AssumeRole",
        Effect = "Allow",
        Principal = {
          Service = "lambda.amazonaws.com"
        },
      },
    ]
  })
}

resource "aws_iam_policy" "lambda_policy" {
  name        = "lambda_policy"
  description = "A policy that allows a lambda function to access S3 and SFTP resources"

  policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = [
          "s3:ListBucket",
          "s3:GetObject",
          "s3:PutObject",
        ],
        Effect = "Allow",
        Resource = [
          "arn:aws:s3:::seu-bucket-s3",
          "arn:aws:s3:::seu-bucket-s3/*",
        ],
      },
    ]
  })
}

resource "aws_iam_role_policy_attachment" "lambda_policy_attachment" {
  role       = aws_iam_role.lambda_execution_role.name
  policy_arn = aws_iam_policy.lambda_policy.arn
}

resource "aws_lambda_function" "sftp_lambda" {
  function_name = "sftp_lambda_function"

  s3_bucket = "seu-bucket-s3-com-codigo-lambda"
  s3_key    = "sftp-lambda.zip"

  handler = "main"
  runtime = "go1.x"

  role = aws_iam_role.lambda_execution_role.arn

  environment {
    variables = {
      SFTP_HOST     = "endereco_sftp",
      SFTP_USER     = "seu_usuario_sftp",
      SFTP_PASSWORD = "sua_senha_sftp",
      S3_BUCKET     = "seu-bucket-s3",
    }
  }
}

resource "aws_s3_bucket" "s3_bucket" {
  bucket = "seu-bucket-s3"
  acl    = "private"
}
ログイン後にコピー
ログイン後にコピー
  • GitLab CI/CD は新しいコミットを検出し、パイプラインを自動的に開始します。
  • リポジトリの CI/CD セクションにアクセスして、GitLab のパイプラインの実行を追跡します。
  • すべての段階が成功すると、Lambda 関数がデプロイされ、使用できるようになります。

アクセス トークンや秘密キーなどの機密情報を保存するには、GitLab CI/CD で環境変数を構成する必要があることに注意してください。これは、[設定] > [設定] で行うことができます。 「CI/CD」> GitLab プロジェクトの「変数」。

また、Databricks トークンにジョブをトリガーするために必要な権限があること、および指定された ID でジョブが存在することを確認してください。

結論

GitLab CI/CD、Terraform、AWS Lambda などのツールを使用すると、データ エンジニアリング タスクの自動化を大幅に簡素化できます。この記事で説明する手順に従うことで、Go の効率性とシンプルさを備えた SFTP、S3、Databricks 間のデータ収集と統合を自動化する堅牢なシステムを作成できます。このアプローチにより、次のような問題に対処する準備が整います。大規模なデータ統合の課題

私の連絡先:

LinkedIn - エアトン リラ ジュニア

iMasters - エアトン・リラ・ジュニア

aws #lambda #terraform #gitlab #ci_cd #go #databricks #dataengineering #automation

stages:
  - test
  - build
  - deploy

variables:
  S3_BUCKET: "seu-bucket-s3"
  AWS_DEFAULT_REGION: "us-east-1"
  TF_VERSION: "1.0.0"

before_script:
  - 'which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )'
  - eval $(ssh-agent -s)
  - echo "$PRIVATE_KEY" | tr -d '\r' | ssh-add -
  - mkdir -p ~/.ssh
  - chmod 700 ~/.ssh
  - ssh-keyscan -H 'endereco_sftp' >> ~/.ssh/known_hosts

test:
  stage: test
  image: golang:1.18
  script:
    - go test -v ./...

build:
  stage: build
  image: golang:1.18
  script:
    - go build -o myapp
    - zip -r sftp-lambda.zip myapp
  artifacts:
    paths:
      - sftp-lambda.zip
  only:
    - master

deploy:
  stage: deploy
  image: hashicorp/terraform:$TF_VERSION
  script:
    - terraform init
    - terraform apply -auto-approve
  only:
    - master
  environment:
    name: production
ログイン後にコピー
ログイン後にコピー

以上がGitLab CI/CD および SFTP 統合のための Terraform を使用した Lambda の実装、Go の S Databricksの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Debian OpenSSLの脆弱性は何ですか Debian OpenSSLの脆弱性は何ですか Apr 02, 2025 am 07:30 AM

OpenSSLは、安全な通信で広く使用されているオープンソースライブラリとして、暗号化アルゴリズム、キー、証明書管理機能を提供します。ただし、その歴史的バージョンにはいくつかの既知のセキュリティの脆弱性があり、その一部は非常に有害です。この記事では、Debian SystemsのOpenSSLの共通の脆弱性と対応測定に焦点を当てます。 Debianopensslの既知の脆弱性:OpenSSLは、次のようないくつかの深刻な脆弱性を経験しています。攻撃者は、この脆弱性を、暗号化キーなどを含む、サーバー上の不正な読み取りの敏感な情報に使用できます。

フロントエンドからバックエンドの開発に変身すると、JavaやGolangを学ぶことはより有望ですか? フロントエンドからバックエンドの開発に変身すると、JavaやGolangを学ぶことはより有望ですか? Apr 02, 2025 am 09:12 AM

バックエンド学習パス:フロントエンドからバックエンドへの探査の旅は、フロントエンド開発から変わるバックエンド初心者として、すでにNodeJSの基盤を持っています...

Go's Crawler Collyのキュースレッドの問題は何ですか? Go's Crawler Collyのキュースレッドの問題は何ですか? Apr 02, 2025 pm 02:09 PM

Go Crawler Collyのキュースレッドの問題は、Go言語でColly Crawler Libraryを使用する問題を調査します。 �...

GOの浮動小数点番号操作に使用されるライブラリは何ですか? GOの浮動小数点番号操作に使用されるライブラリは何ですか? Apr 02, 2025 pm 02:06 PM

GO言語の浮動小数点数操作に使用されるライブラリは、精度を確保する方法を紹介します...

Beego ormのモデルに関連付けられているデータベースを指定する方法は? Beego ormのモデルに関連付けられているデータベースを指定する方法は? Apr 02, 2025 pm 03:54 PM

Beegoormフレームワークでは、モデルに関連付けられているデータベースを指定する方法は?多くのBEEGOプロジェクトでは、複数のデータベースを同時に操作する必要があります。 Beegoを使用する場合...

Goでは、Printlnとstring()関数を備えた文字列を印刷すると、なぜ異なる効果があるのですか? Goでは、Printlnとstring()関数を備えた文字列を印刷すると、なぜ異なる効果があるのですか? Apr 02, 2025 pm 02:03 PM

Go言語での文字列印刷の違い:printlnとstring()関数を使用する効果の違いはGOにあります...

Golandのカスタム構造ラベルが表示されない場合はどうすればよいですか? Golandのカスタム構造ラベルが表示されない場合はどうすればよいですか? Apr 02, 2025 pm 05:09 PM

Golandのカスタム構造ラベルが表示されない場合はどうすればよいですか?ゴーランドを使用するためにGolandを使用する場合、多くの開発者はカスタム構造タグに遭遇します...

Redisストリームを使用してGO言語でメッセージキューを実装する場合、user_idタイプの変換の問題を解決する方法は? Redisストリームを使用してGO言語でメッセージキューを実装する場合、user_idタイプの変換の問題を解決する方法は? Apr 02, 2025 pm 04:54 PM

redisstreamを使用してGo言語でメッセージキューを実装する問題は、GO言語とRedisを使用することです...

See all articles