Python の文字列連結の最適化は大きな文字列にも適用されますか?
Python で文字列を別の文字列に効率的に追加する方法
Python では、文字列を ' ' 演算子で連結するのが一般的なタスクです。次のコードは単純ですが、
<code class="python">var1 = "foo" var2 = "bar" var3 = var1 + var2</code>
特に大きな文字列や繰り返しの連結の場合、効率に関して疑問が生じます。
インプレース文字列拡張
幸いなことに、CPython は文字列連結の効率を高める最適化を実装しました。文字列への参照が 1 つだけ存在し、その文字列に別の文字列が追加される場合、CPython は元の文字列をその場で拡張しようとします。この最適化により、操作は O(n) で償却されます。
たとえば、次のコードは以前は O(n^2) でした:
<code class="python">s = "" for i in range(n): s += str(i)</code>
しかし、最適化により、現在は O(n^2) でした。 O(n) で実行されます。
Python の実装詳細
次に、最適化を示す Python C ソース コードの抜粋を示します。
<code class="c">int _PyBytes_Resize(PyObject **pv, Py_ssize_t newsize) { /* ... */ *pv = (PyObject *) PyObject_REALLOC((char *)v, PyBytesObject_SIZE + newsize); if (*pv == NULL) { PyObject_Del(v); PyErr_NoMemory(); return -1; } _Py_NewReference(*pv); sv = (PyBytesObject *) *pv; Py_SIZE(sv) = newsize; sv->ob_sval[newsize] = '<pre class="brush:php;toolbar:false"><code class="python">import timeit s = "" for i in range(10): s += 'a' # Time the concatenation of 10 'a' characters t1 = timeit.timeit(stmt="""s = "" for i in range(10): s += 'a'""", globals=globals(), number=1000000) # Time the concatenation of 100 'a' characters t2 = timeit.timeit(stmt="""s = "" for i in range(100): s += 'a'""", globals=globals(), number=100000) # Time the concatenation of 1000 'a' characters t3 = timeit.timeit(stmt="""s = "" for i in range(1000): s += 'a'""", globals=globals(), number=10000) print("10 'a':", t1) print("100 'a':", t2) print("1000 'a':", t3)</code>
この関数では、文字列オブジェクトのサイズ変更が可能ですが、それへの参考資料が 1 つあります。文字列のサイズは、元のメモリ位置を維持しながら変更されます。
注意
この最適化は Python 仕様の一部ではないことに注意することが重要です。これは CPython インタプリタでのみ実装されます。 PyPy や Jython などの他の Python 実装は、異なるパフォーマンス特性を示す場合があります。
経験的テスト
経験的に、最適化は次のコードのパフォーマンスで明らかです。
結果は、次の数に応じて実行時間が大幅に増加することを示しています。
結論
一方、Python のインプレース文字列拡張最適化により、特定の領域では文字列連結の効率が大幅に向上します。シナリオでは、この実装の制限を理解することが不可欠です。大きな文字列の場合、またはメモリ管理の考慮事項が最重要である場合、最適なパフォーマンスを達成するには、文字列操作の代替方法が必要になる場合があります。
以上がPython の文字列連結の最適化は大きな文字列にも適用されますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
