演算子連鎖を使用して Pandas DataFrame の行をフィルタリングするにはどうすればよいですか?

Mary-Kate Olsen
リリース: 2024-11-03 15:36:30
オリジナル
773 人が閲覧しました

How Can You Filter Rows in Pandas DataFrames with Operator Chaining?

演算子チェーンを使用した Pandas DataFrames の行のフィルタリング

pandas 操作の柔軟性により、データ操作タスクを達成するための便利なチェーンが可能になります。ただし、従来、行のフィルタリングには手動のブラケット インデックス作成が必要で、面倒な場合がありました。

チェーン ブール インデックス

演算子チェーンを使用して行をフィルタリングする最も簡単な方法は、ブール マスクとそれを使用した DataFrame のインデックス作成:

<code class="python">df_filtered = df[df['column'] == value]</code>
ログイン後にコピー

ブール マスクは、指定された列の各行の値をチェックし、一致する行に対して True を返します。

カスタム マスク メソッドの連鎖

または、カスタム マスキング メソッドを使用して DataFrame クラスを拡張できます。

<code class="python">def mask(df, key, value):
    return df[df[key] == value]

pandas.DataFrame.mask = mask</code>
ログイン後にコピー

このメソッドは、DataFrame、列名、および値をパラメータとして受け取り、ベースに基づいて行を選択的にマスクします。

<code class="python">df_filtered = df.mask('column', value)</code>
ログイン後にコピー

複数のマスクの連鎖

連鎖演算子のフィルタリングにより、複数のマスクを組み合わせることで複雑な条件が可能になります:

<code class="python">df_filtered = df[
    (df['column1'] == value1) &
    (df['column2'] == value2) &
    ...
]</code>
ログイン後にコピー

要約すると、pandas は連鎖行フィルタリングのための 2 つの主要なメソッドを提供します:

  • 連鎖ブールインデックス: ブールマスクに基づいて行を選択的にインデックスします。
  • カスタム マスク メソッドの連鎖: 特定のフィルタリング操作用のカスタム マスキング メソッドを使用して DataFrame クラスを拡張します。

以上が演算子連鎖を使用して Pandas DataFrame の行をフィルタリングするにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ソース:php.cn
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
著者別の最新記事
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート
私たちについて 免責事項 Sitemap
PHP中国語ウェブサイト:福祉オンライン PHP トレーニング,PHP 学習者の迅速な成長を支援します!