PyTorch の eq と ne

Susan Sarandon
リリース: 2024-11-05 19:12:02
オリジナル
784 人が閲覧しました

eq and ne in PyTorch

コーヒー買ってきて☕

*メモ:

  • 私の投稿では gt() と lt() について説明しています。
  • 私の投稿では ge() と le() について説明しています。
  • 私の投稿では isclose() と equal() について説明しています。

eq() は、最初の 0D またはそれ以上の D テンソルの 0 個以上の要素が 2 番目の 0D またはそれ以上の D テンソルの 0 個以上の要素と要素的に等しいかどうかをチェックし、次の 0D またはそれ以上の D テンソルを取得します。以下に示すように、0 個以上の要素:

*メモ:

  • eq() はトーチまたはテンソルとともに使用できます。
  • トーチまたはテンソル (必須タイプ: int、float、complex、または bool のテンソル) を使用する 1 番目の引数 (入力)。
  • torch の 2 番目の引数、またはテンソルの 1 番目の引数は、other(必須タイプ: テンソルまたは int、float、complex、または bool のスカラー) です。
  • torch(Optional-Default:None-Type:tensor) には out 引数があります: *メモ:
    • out= を使用する必要があります。
    • 私の投稿では議論を説明しています。
  • 結果は、より多くの要素を持つより高い D テンソルになります。
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([7, 0, 3])

torch.eq(input=tensor1, other=tensor2)
tensor1.eq(other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([False, True, True])

tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.eq(input=tensor1, other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([[False, True, False],
#         [False, False, True]])

torch.eq(input=tensor1, other=3)
# tensor(False)

torch.eq(input=tensor2, other=3)
# tensor([[True, False, False],
#         [False, True, False]])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[5, 5, 5],
                        [0, 0, 0],
                        [3, 3, 3]])
torch.eq(input=tensor1, other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([[True, False, False],
#         [False, True, False], 
#         [False, False, True]])

torch.eq(input=tensor1, other=3)
# tensor([False, False, True])

torch.eq(input=tensor2, other=3)
# tensor([[False, False, False],
#         [False, False, False],
#         [True, True, True]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[5., 5., 5.],
                        [0., 0., 0.],
                        [3., 3., 3.]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, True, False], 
#         [False, False, True]])

torch.eq(input=tensor1, other=3.)
# tensor([False, False, True])

tensor1 = torch.tensor([5.+0.j, 0.+0.j, 3.+0.j])
tensor2 = torch.tensor([[5.+0.j, 5.+0.j, 5.+0.j],
                        [0.+0.j, 0.+0.j, 0.+0.j],
                        [3.+0.j, 3.+0.j, 3.+.0j]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, True, False],
#         [False, False, True]])

torch.eq(input=tensor1, other=3.+0.j)
# tensor([False, False, True])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False],
                        [True, False, True]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, True, True],
#         [False, False, False],
#         [True, True, True]])

torch.eq(input=tensor1, other=True)
# tensor([True, False, True])
ログイン後にコピー

ne() は、最初の 0D またはそれ以上の D テンソルの 0 個以上の要素が 2 番目の 0D またはそれ以上の D テンソルの 0 個以上の要素と要素的に等しくないかどうかをチェックし、0D またはそれ以上の D テンソルを取得します。以下に示すように、0 個以上の要素で構成されます:

*メモ:

  • ne() はトーチまたはテンソルとともに使用できます。
  • トーチまたはテンソル (必須タイプ: int、float、complex、または bool のテンソル) を使用する 1 番目の引数 (入力)。
  • torch の 2 番目の引数、またはテンソルの 1 番目の引数は、other(必須タイプ: テンソルまたは int、float、complex、または bool のスカラー) です。
  • torch(Optional-Default:None-Type:tensor) には out 引数があります: *メモ:
    • out= を使用する必要があります。
    • 私の投稿では議論を説明しています。
  • not_equal() は ne() のエイリアスです。
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([7, 0, 3])

torch.ne(input=tensor1, other=tensor2)
tensor1.ne(other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([True, False, False])

tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.ne(input=tensor1, other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([[True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3)
# tensor(True)

torch.ne(input=tensor2, other=3)
# tensor([[False, True, True],
#         [True, False, True]])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[5, 5, 5],
                        [0, 0, 0],
                        [3, 3, 3]])
torch.ne(input=tensor1, other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3)
# tensor([True, True, False])

torch.ne(input=tensor2, other=3)
# tensor([[True, True, True],
#         [True, True, True],
#         [False, False, False]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[5., 5., 5.],
                        [0., 0., 0.],
                        [3., 3., 3.]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3.)
# tensor([True, True, False])

tensor1 = torch.tensor([5.+0.j, 0.+0.j, 3.+0.j])
tensor2 = torch.tensor([[5.+0.j, 5.+0.j, 5.+0.j],
                        [0.+0.j, 0.+0.j, 0.+0.j],
                        [3.+0.j, 3.+0.j, 3.+.0j]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3.+0.j)
# tensor([True, True, False])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False],
                        [True, False, True]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, False, False],
#         [True, True, True],
#         [False, False, False]])

torch.ne(input=tensor1, other=True)
# tensor([False, True, False])
ログイン後にコピー

以上がPyTorch の eq と neの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ソース:dev.to
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
著者別の最新記事
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート