ホームページ バックエンド開発 Python チュートリアル Pandas でのシーケンシャル分析のために DataFrame ループを最適化するにはどうすればよいですか?

Pandas でのシーケンシャル分析のために DataFrame ループを最適化するにはどうすればよいですか?

Nov 14, 2024 pm 06:41 PM

How Can I Optimize DataFrame Looping for Sequential Analysis in Pandas?

逐次分析のためのデータフレーム ループの最適化

パンダでデータフレームを操作する場合、大規模なデータセットで複雑な操作を実行するには効率的なループが重要です。提供された例に示すように、各行を手動で反復処理すると、時間がかかり、メモリを大量に消費する可能性があります。

Iterrows() 関数

幸いなことに、新しいバージョンの pandas は、データフレームの反復を効率的に行うために特別に設計された組み込み関数 iterrows() を提供します。この関数は、行インデックスを含むタプルと行の値を表す pandas Series オブジェクトを生成する反復子を返します。

for index, row in df.iterrows():
    date = row['Date']
    open, high, low, close, adjclose = row[['Open', 'High', 'Low', 'Close', 'Adj Close']]
    # Perform analysis on open/close based on date
ログイン後にコピー

Numpy 関数の使用

ただし、速度が最も重要であるため、numpy 関数を使用すると、行をループするよりもさらに高速になります。 Numpy は、列全体の計算を一度に実行できるベクトル化された操作を提供し、個々の行の反復処理に伴うオーバーヘッドを大幅に削減します。

たとえば、終値の変化率を計算するには:

import numpy as np
close_change = np.diff(df['Close']) / df['Close'][1:] * 100
ログイン後にコピー

メモリの最適化

大きなデータフレームを反復処理する際のメモリ使用量を最適化するには、iterrows() の代わりに itertuples() メソッドを使用することを検討してください。このメソッドは、名前付きタプル オブジェクトを生成するイテレータを返し、pandas Series オブジェクトの作成を回避することでメモリ消費を削減します。

for row in df.itertuples():
    date = row.Date
    open, high, low, close, adjclose = row.Open, row.High, row.Low, row.Close, row.Adj_Close
    # Perform analysis on open/close based on date
ログイン後にコピー

これらの最適化されたループ手法を活用することで、パフォーマンスとメモリ効率を大幅に向上させることができます。財務データ分析。

以上がPandas でのシーケンシャル分析のために DataFrame ループを最適化するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか? 中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか? Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は? あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は? Apr 01, 2025 pm 11:15 PM

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

uvicornは、serving_forever()なしでhttpリクエストをどのように継続的に聞いていますか? uvicornは、serving_forever()なしでhttpリクエストをどのように継続的に聞いていますか? Apr 01, 2025 pm 10:51 PM

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は? プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は? Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

Investing.comの反クローラーメカニズムをバイパスするニュースデータを取得する方法は? Investing.comの反クローラーメカニズムをバイパスするニュースデータを取得する方法は? Apr 02, 2025 am 07:03 AM

Investing.comの反クラウリング戦略を理解する多くの人々は、Investing.com(https://cn.investing.com/news/latest-news)からのニュースデータをクロールしようとします。

See all articles