アプリケーションに適した地理的近接計算式はどれですか?

DDD
リリース: 2024-11-14 21:10:02
オリジナル
634 人が閲覧しました

Which Geo Proximity Calculation Formula is Right for Your Application?

地理的近接性の計算式の比較

地理的近接性を計算する場合、式の選択は、速度、精度、アプリケーション要件などの要因によって異なります。 。ここでは、一般的な式とその主な違いについてのガイドを示します。

Haversine 式

この式は、浮動小数点誤差に対する堅牢性があるため、一般的に使用されます。球形の地球上の 2 点間の距離を計算します。 Haversine の公式は、三角法と平方根演算を使用するため、比較的高速に計算できます。これは、ほとんどの実用的なアプリケーションに優れた精度を提供します。

大圏距離公式

この用語は、多くの場合、コサインの球面法則またはヴィンセンティの公式を指します。余弦球面法則は地球を球形に近似しますが、ヴィンセンティの公式は地球の楕円体の形状を説明します。その結果、Vincenty の公式はより正確になりますが、計算コストが高くなります。

球面余弦の法則

ハバーサインの公式と同様に、球面余弦の法則は、次の距離を計算します。球形の地球。これは、Haversine 式よりわずかに高速ですが、同等の精度を提供します。この公式は、高精度が重要ではないほとんどのアプリケーションに適しています。

Vincenty の公式

最も正確な公式として、Vincenty の公式は地球の楕円体形状を説明します。ただし、この精度には、他の式よりも計算速度が遅いという代償が伴います。 Vincenty の公式は、高精度が要求されるアプリケーションに適しています。

速度と精度

速度と精度の点では、余弦の球面法則が適切な妥協策です。 Haversine 式と同様の精度を提供しますが、速度はわずかに優れています。高精度が必須ではない場合は、余弦の球面法則が適切な選択となります。

精度が重要な場合、Vincenty の公式は最良の結果をもたらしますが、計算時間は遅くなります。 Haversine 式は速度と精度のバランスを提供し、多くのアプリケーションで実行可能なオプションとなります。

以上がアプリケーションに適した地理的近接計算式はどれですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ソース:php.cn
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート