Java で編集距離を計算し、2 つの文字列間の類似性を判断するために、レーベンシュタイン アルゴリズムをどのように使用できますか?
Java での類似文字列比較
複数の文字列を比較して最も類似した文字列を特定する場合、適切な技術とアルゴリズムを活用することが不可欠です。この記事では、2 つの文字列間の類似性を計算するために「編集距離」として知られる広く使用されているアプローチについて詳しく説明します。
レーベンシュタイン アルゴリズムを使用した編集距離の計算
編集の計算距離には、ある文字列を別の文字列に変換するために必要な文字の挿入、削除、置換の最小数を決定することが含まれます。レーベンシュタイン アルゴリズムは、編集距離を計算するための古典的なアプローチであり、プログラミング ライブラリに組み込まれることがよくあります。レーベンシュタイン アルゴリズムを使用して計算するには:
// Levenshtein's Edit Distance Function public static int editDistance(String s1, String s2) { // Convert to lower case for case-insensitive comparison s1 = s1.toLowerCase(); s2 = s2.toLowerCase(); int[][] matrix = new int[s2.length() + 1][s1.length() + 1]; // Initialize first column to cost of insertion for (int i = 0; i <= s1.length(); i++) { matrix[0][i] = i; } // Initialize first row to cost of deletion for (int j = 0; j <= s2.length(); j++) { matrix[j][0] = j; } // Populate the matrix for (int j = 1; j <= s2.length(); j++) { for (int i = 1; i <= s1.length(); i++) { int cost = s1.charAt(i - 1) == s2.charAt(j - 1) ? 0 : 1; int min = Math.min(matrix[j - 1][i] + 1, // Deletion Math.min(matrix[j][i - 1] + 1, // Insertion matrix[j - 1][i - 1] + cost)); // Substitution matrix[j][i] = min; } } return matrix[s2.length()][s1.length()]; }
正規化された類似性インデックス
編集距離が計算されたら、長さに正規化することで類似性インデックスを計算できます。長い文字列の:
// Similarity Index Function public static double similarityIndex(String s1, String s2) { int distance = editDistance(s1, s2); String longer = s1.length() > s2.length() ? s1 : s2; double similarity = 1.0 - (distance / (double) longer.length()); return similarity; }
使用法例:
これらのメソッドを利用するには、次のように適用できます:
String str1 = "The quick fox jumped"; String str2 = "The fox"; double similarity = similarityIndex(str1, str2); System.out.println("Similarity Index: " + similarity);
出力:
Similarity Index: 0.70
This例では、「The Quick fox Jumped」と「The Quick fox Jumped」の間の類似性指数 0.7 を示しています。 fox".
全体として、この記事で説明する手法は、文字列の類似性を定量化するための堅牢な方法を提供し、複数の文字列の効率的かつ効果的な比較を可能にします。
以上がJava で編集距離を計算し、2 つの文字列間の類似性を判断するために、レーベンシュタイン アルゴリズムをどのように使用できますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











一部のアプリケーションが適切に機能しないようにする会社のセキュリティソフトウェアのトラブルシューティングとソリューション。多くの企業は、内部ネットワークセキュリティを確保するためにセキュリティソフトウェアを展開します。 ...

システムドッキングでのフィールドマッピング処理は、システムドッキングを実行する際に難しい問題に遭遇することがよくあります。システムのインターフェイスフィールドを効果的にマッピングする方法A ...

多くのアプリケーションシナリオでソートを実装するために名前を数値に変換するソリューションでは、ユーザーはグループ、特に1つでソートする必要がある場合があります...

データベース操作にMyBatis-Plusまたはその他のORMフレームワークを使用する場合、エンティティクラスの属性名に基づいてクエリ条件を構築する必要があることがよくあります。あなたが毎回手動で...

intellijideaultimatiateバージョンを使用してスプリングを開始します...

Javaオブジェクトと配列の変換:リスクの詳細な議論と鋳造タイプ変換の正しい方法多くのJava初心者は、オブジェクトのアレイへの変換に遭遇します...

eコマースプラットフォーム上のSKUおよびSPUテーブルの設計の詳細な説明この記事では、eコマースプラットフォームでのSKUとSPUのデータベース設計の問題、特にユーザー定義の販売を扱う方法について説明します。

Redisキャッシュソリューションは、製品ランキングリストの要件をどのように実現しますか?開発プロセス中に、多くの場合、ランキングの要件に対処する必要があります。
