ホームページ Java &#&チュートリアル Spring Data JPA ストリームのクエリ メソッド

Spring Data JPA ストリームのクエリ メソッド

Nov 22, 2024 am 05:35 AM

Spring Data JPA Stream Query Methods

導入

従来、大量のデータをフェッチすると、結果セット全体をメモリにロードすることが多くなるため、メモリ リソースに負担がかかる可能性があります。

=>;ストリーム クエリ メソッドは、Java 8 Streams を使用してデータを段階的に処理する方法を提供することで、ソリューションを提供します。これにより、常にデータの一部のみがメモリに保持されるようになり、パフォーマンスとスケーラビリティが向上します

このブログ投稿では、Spring Data JPA でストリーム クエリ メソッドがどのように機能するかを詳しく掘り下げ、そのユースケースを調査し、その実装を示します。

このガイドでは次のものを使用します:

  • IDE: IntelliJ IDEA (Spring アプリケーションに推奨) または Eclipse
  • Java バージョン: 17
  • Spring Data JPA バージョン: 2.7.x 以降 (Spring Boot 3.x と互換性あり)
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
ログイン後にコピー
ログイン後にコピー

注: より詳細な例については、こちらの GitHub リポジトリにアクセスしてください

1. ストリームクエリメソッドとは何ですか?

Spring Data JPA のストリーム クエリ メソッドを使用すると、クエリ結果をリストや他のコレクション型ではなくストリームとして返すことができます。このアプローチにはいくつかの利点があります。

  • 効率的なリソース管理: データは段階的に処理され、メモリのオーバーヘッドが削減されます。

  • 遅延処理: 結果はオンデマンドでフェッチされ、処理されます。これは、ページネーションやバッチ処理などのシナリオに最適です。

  • 関数型プログラミングとの統合: ストリームは Java の関数型プログラミング機能に適合し、フィルター、マップ、収集などの操作を可能にします。

2. ストリームクエリメソッドの使用方法?

=>;電子商取引アプリケーションを開発していて、次のことをしたいと想像してみましょう。

  • 特定の日付以降に注文したすべての顧客を取得します。
  • 指定された合計金額を超える注文をフィルターします。
  • 過去 6 か月以内の合計注文額に基づいて顧客をグループ化します。
  • 顧客名とその合計注文額の概要としてデータを返します。

エンティティ

  • 顧客: 顧客を表します。
@Setter
@Getter
@Entity
@Entity(name = "tbl_customer")
public class Customer {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private String name;
    private String email;

    @OneToMany(mappedBy = "customer", cascade = CascadeType.ALL, fetch = FetchType.LAZY)
    private List<Order> orders;
}
ログイン後にコピー
ログイン後にコピー
  • 注文: 顧客による注文を表します。
@Setter
@Getter
@Entity(name = "tbl_order")
public class Order {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private Double amount;
    private LocalDateTime orderDate;

    @ManyToOne
    @JoinColumn(name = "customer_id")
    private Customer customer;
}
ログイン後にコピー
ログイン後にコピー

リポジトリ

  • CustomerRepository は、顧客と、特定の日付以降に行われた関連する注文を選択するために使用されます。そして、Stream を使用しました。 List の代わりにクエリの結果を処理します。
public interface CustomerRepository extends JpaRepository<Customer, Long> {
    @Query("""
                SELECT c FROM tbl_customer c JOIN FETCH c.orders o WHERE o.orderDate >= :startDate
            """)
    @QueryHints(
            @QueryHint(name = AvailableHints.HINT_FETCH_SIZE, value = "25")
    )
    Stream<Customer> findCustomerWithOrders(@Param("startDate") LocalDateTime startDate);
}
ログイン後にコピー
ログイン後にコピー

注:

  • JOIN FETCH により、注文は積極的にロードされます。

  • JPA に追加のヒントを提供するために使用される @QueryHints (Hibernate など) は、クエリの実行を最適化します。

=>;たとえば、クエリが 100 レコードを返した場合:

  • 最初の 25 レコードがアプリケーションによってフェッチされ、処理されます。
  • それらが処理されると、次の 25 がフェッチされ、100 レコードすべてが処理されるまで同様に繰り返されます。
  • この動作により、メモリ使用量が最小限に抑えられ、100 件すべてのレコードが一度にメモリにロードされることがなくなります。

サービス

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
ログイン後にコピー
ログイン後にコピー

これは、startDate と minOrderAmount の 2 つのパラメーターを使用してデータを処理するサービス クラスです。ご覧のとおり、SQL クエリを使用してフィルタリングすることはなく、すべてのデータをストリームとしてロードし、Java コードでフィルタリングしてグループ化します。

コントローラー

@Setter
@Getter
@Entity
@Entity(name = "tbl_customer")
public class Customer {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private String name;
    private String email;

    @OneToMany(mappedBy = "customer", cascade = CascadeType.ALL, fetch = FetchType.LAZY)
    private List<Order> orders;
}
ログイン後にコピー
ログイン後にコピー

テスト

=>;テスト用のデータを作成するには、ソース コード内で次のスクリプトを実行するか、自分で追加することができます。

src/main/resources/dummy-data.sql

リクエスト:

  • startDate: 2024-05-01T00:00:00
  • 最小注文量: 100
@Setter
@Getter
@Entity(name = "tbl_order")
public class Order {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private Double amount;
    private LocalDateTime orderDate;

    @ManyToOne
    @JoinColumn(name = "customer_id")
    private Customer customer;
}
ログイン後にコピー
ログイン後にコピー

応答:

  • 合計金額が minOrderAmount 以上のすべての顧客を返します。
public interface CustomerRepository extends JpaRepository<Customer, Long> {
    @Query("""
                SELECT c FROM tbl_customer c JOIN FETCH c.orders o WHERE o.orderDate >= :startDate
            """)
    @QueryHints(
            @QueryHint(name = AvailableHints.HINT_FETCH_SIZE, value = "25")
    )
    Stream<Customer> findCustomerWithOrders(@Param("startDate") LocalDateTime startDate);
}
ログイン後にコピー
ログイン後にコピー

3. ストリームとリスト

=>; IntelliJ Profiler を使用して、メモリ使用量と実行時間を監視できます。大規模なデータセットを追加してテストする方法の詳細については、私の GitHub リポジトリを参照してください

小規模データセット: (顧客 10 人、注文 100 件)

  • ストリーム: 実行時間 (~5ms)、メモリ使用量 (低)
  • リスト: 実行時間 (~4ms)、メモリ使用量 (低)

大規模なデータセット (顧客 10,000、注文 100,000)

  • ストリーム: 実行時間 (~202ms)、メモリ使用量 (中程度)
  • リスト: 実行時間 (~176ms)、メモリ使用量 (高)

パフォーマンス指標

Metric Stream List
Initial Fetch Time Slightly slower (due to lazy loading) Faster (all at once)
Memory Consumption Low (incremental processing) High (entire dataset in memory)
Memory Consumption Low (incremental processing) High (entire dataset in memory)
Processing Overhead Efficient for large datasets May cause memory issues for large datasets
Batch Fetching Supported (with fetch size) Not applicable
Error Recovery Graceful with early termination Limited, as data is preloaded

まとめ

Spring Data JPA ストリーム クエリ メソッドは、Java Streams の機能を活用しながら、大規模なデータセットを効率的に処理するエレガントな方法を提供します。データを段階的に処理することでメモリ消費を削減し、最新の関数型プログラミング パラダイムとシームレスに統合します。

ストリームクエリメソッドについてどう思いますか?以下のコメント欄であなたの経験や使用例を共有してください!

次の投稿でお会いしましょう。コーディングを楽しんでください!

以上がSpring Data JPA ストリームのクエリ メソッドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

会社のセキュリティソフトウェアはアプリケーションの実行に失敗していますか?それをトラブルシューティングと解決する方法は? 会社のセキュリティソフトウェアはアプリケーションの実行に失敗していますか?それをトラブルシューティングと解決する方法は? Apr 19, 2025 pm 04:51 PM

一部のアプリケーションが適切に機能しないようにする会社のセキュリティソフトウェアのトラブルシューティングとソリューション。多くの企業は、内部ネットワークセキュリティを確保するためにセキュリティソフトウェアを展開します。 ...

MapsTructを使用したシステムドッキングのフィールドマッピングの問題を簡素化する方法は? MapsTructを使用したシステムドッキングのフィールドマッピングの問題を簡素化する方法は? Apr 19, 2025 pm 06:21 PM

システムドッキングでのフィールドマッピング処理は、システムドッキングを実行する際に難しい問題に遭遇することがよくあります。システムのインターフェイスフィールドを効果的にマッピングする方法A ...

エンティティクラス変数名をエレガントに取得して、データベースクエリ条件を構築する方法は? エンティティクラス変数名をエレガントに取得して、データベースクエリ条件を構築する方法は? Apr 19, 2025 pm 11:42 PM

データベース操作にMyBatis-Plusまたはその他のORMフレームワークを使用する場合、エンティティクラスの属性名に基づいてクエリ条件を構築する必要があることがよくあります。あなたが毎回手動で...

名前を数値に変換してソートを実装し、グループの一貫性を維持するにはどうすればよいですか? 名前を数値に変換してソートを実装し、グループの一貫性を維持するにはどうすればよいですか? Apr 19, 2025 pm 11:30 PM

多くのアプリケーションシナリオでソートを実装するために名前を数値に変換するソリューションでは、ユーザーはグループ、特に1つでソートする必要がある場合があります...

Intellijのアイデアは、ログを出力せずにSpring Bootプロジェクトのポート番号をどのように識別しますか? Intellijのアイデアは、ログを出力せずにSpring Bootプロジェクトのポート番号をどのように識別しますか? Apr 19, 2025 pm 11:45 PM

intellijideaultimatiateバージョンを使用してスプリングを開始します...

Javaオブジェクトを配列に安全に変換する方法は? Javaオブジェクトを配列に安全に変換する方法は? Apr 19, 2025 pm 11:33 PM

Javaオブジェクトと配列の変換:リスクの詳細な議論と鋳造タイプ変換の正しい方法多くのJava初心者は、オブジェクトのアレイへの変換に遭遇します...

eコマースプラットフォームSKUおよびSPUデータベースデザイン:ユーザー定義の属性と原因のない製品の両方を考慮する方法は? eコマースプラットフォームSKUおよびSPUデータベースデザイン:ユーザー定義の属性と原因のない製品の両方を考慮する方法は? Apr 19, 2025 pm 11:27 PM

eコマースプラットフォーム上のSKUおよびSPUテーブルの設計の詳細な説明この記事では、eコマースプラットフォームでのSKUとSPUのデータベース設計の問題、特にユーザー定義の販売を扱う方法について説明します。

データベースクエリにTKMYBATISを使用するときに、エンティティクラスの変数名の構築クエリ条件をエレガントに取得する方法は? データベースクエリにTKMYBATISを使用するときに、エンティティクラスの変数名の構築クエリ条件をエレガントに取得する方法は? Apr 19, 2025 pm 09:51 PM

データベースクエリにTKMYBATISを使用する場合、クエリ条件を構築するためにエンティティクラスの変数名を優雅に取得する方法は一般的な問題です。この記事はピン留めします...

See all articles